Loading…

Data-driven modelling of neurodegenerative disease progression: thinking outside the black box

Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with la...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Neuroscience 2024-02, Vol.25 (2), p.111-130
Main Authors: Young, Alexandra L., Oxtoby, Neil P., Garbarino, Sara, Fox, Nick C., Barkhof, Frederik, Schott, Jonathan M., Alexander, Daniel C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83
cites cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83
container_end_page 130
container_issue 2
container_start_page 111
container_title Nature reviews. Neuroscience
container_volume 25
creator Young, Alexandra L.
Oxtoby, Neil P.
Garbarino, Sara
Fox, Nick C.
Barkhof, Frederik
Schott, Jonathan M.
Alexander, Daniel C.
description Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings. Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.
doi_str_mv 10.1038/s41583-023-00779-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912525372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918140178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRuH79AQ-miRcvVQZKYb2Z9TMx8aKJJwkt09q1SxVao_9e9kNNPHggMDPPvDO8hOwDPQbK1UnIQCieUhYPlXKc5mtkCzIJMczU-s-bP47IdghTSiEHmW-SEVcwBslgizydm96k1jfv6JJZZ7FtG1cnXZU4HHyMa3ToTR_riW0CmoDJq-9qjyE0nTtN-ufGvSxahj40FmMCk6I15UtSdB-7ZKMybcC91b1DHi4v7ifX6e3d1c3k7DYtuRR9mtuMKlZaq7jiuZWVEEoqyHJUwkhmcgYM5VgKVmHJDBgOwKiRUFAhZKH4Djla6sbd3gYMvZ41oYyfMQ67IWg2BiaY4JJF9PAPOu0G7-J2cyoOpSDngmxJlb4LwWOlX30zM_5TA9Vz9_XSfR3d1wv3dR6bDlbSQzFD-9PybXcE-BIIseRq9L-z_5H9AlH0jyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918140178</pqid></control><display><type>article</type><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><source>Nature</source><creator>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</creator><creatorcontrib>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</creatorcontrib><description>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings. Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</description><identifier>ISSN: 1471-003X</identifier><identifier>ISSN: 1471-0048</identifier><identifier>EISSN: 1471-0048</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/s41583-023-00779-6</identifier><identifier>PMID: 38191721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116 ; 692/617/375 ; Alzheimer Disease ; Alzheimer's disease ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Computational neuroscience ; Disease ; Disease Progression ; Humans ; Learning algorithms ; Machine learning ; Neurobiology ; Neurodegenerative Diseases ; Neurosciences ; Parameter estimation ; Review Article ; Reviews</subject><ispartof>Nature reviews. Neuroscience, 2024-02, Vol.25 (2), p.111-130</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</citedby><cites>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</cites><orcidid>0000-0003-2439-350X ; 0000-0003-3543-3706 ; 0000-0003-0203-3909 ; 0000-0002-7772-781X ; 0000-0002-3583-3630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38191721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Alexandra L.</creatorcontrib><creatorcontrib>Oxtoby, Neil P.</creatorcontrib><creatorcontrib>Garbarino, Sara</creatorcontrib><creatorcontrib>Fox, Nick C.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><title>Nature reviews. Neuroscience</title><addtitle>Nat. Rev. Neurosci</addtitle><addtitle>Nat Rev Neurosci</addtitle><description>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings. Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</description><subject>631/378/116</subject><subject>692/617/375</subject><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computational neuroscience</subject><subject>Disease</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neurobiology</subject><subject>Neurodegenerative Diseases</subject><subject>Neurosciences</subject><subject>Parameter estimation</subject><subject>Review Article</subject><subject>Reviews</subject><issn>1471-003X</issn><issn>1471-0048</issn><issn>1471-0048</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRuH79AQ-miRcvVQZKYb2Z9TMx8aKJJwkt09q1SxVao_9e9kNNPHggMDPPvDO8hOwDPQbK1UnIQCieUhYPlXKc5mtkCzIJMczU-s-bP47IdghTSiEHmW-SEVcwBslgizydm96k1jfv6JJZZ7FtG1cnXZU4HHyMa3ToTR_riW0CmoDJq-9qjyE0nTtN-ufGvSxahj40FmMCk6I15UtSdB-7ZKMybcC91b1DHi4v7ifX6e3d1c3k7DYtuRR9mtuMKlZaq7jiuZWVEEoqyHJUwkhmcgYM5VgKVmHJDBgOwKiRUFAhZKH4Djla6sbd3gYMvZ41oYyfMQ67IWg2BiaY4JJF9PAPOu0G7-J2cyoOpSDngmxJlb4LwWOlX30zM_5TA9Vz9_XSfR3d1wv3dR6bDlbSQzFD-9PybXcE-BIIseRq9L-z_5H9AlH0jyU</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Young, Alexandra L.</creator><creator>Oxtoby, Neil P.</creator><creator>Garbarino, Sara</creator><creator>Fox, Nick C.</creator><creator>Barkhof, Frederik</creator><creator>Schott, Jonathan M.</creator><creator>Alexander, Daniel C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2439-350X</orcidid><orcidid>https://orcid.org/0000-0003-3543-3706</orcidid><orcidid>https://orcid.org/0000-0003-0203-3909</orcidid><orcidid>https://orcid.org/0000-0002-7772-781X</orcidid><orcidid>https://orcid.org/0000-0002-3583-3630</orcidid></search><sort><creationdate>20240201</creationdate><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><author>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/378/116</topic><topic>692/617/375</topic><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computational neuroscience</topic><topic>Disease</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neurobiology</topic><topic>Neurodegenerative Diseases</topic><topic>Neurosciences</topic><topic>Parameter estimation</topic><topic>Review Article</topic><topic>Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Alexandra L.</creatorcontrib><creatorcontrib>Oxtoby, Neil P.</creatorcontrib><creatorcontrib>Garbarino, Sara</creatorcontrib><creatorcontrib>Fox, Nick C.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Alexandra L.</au><au>Oxtoby, Neil P.</au><au>Garbarino, Sara</au><au>Fox, Nick C.</au><au>Barkhof, Frederik</au><au>Schott, Jonathan M.</au><au>Alexander, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</atitle><jtitle>Nature reviews. Neuroscience</jtitle><stitle>Nat. Rev. Neurosci</stitle><addtitle>Nat Rev Neurosci</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>111</spage><epage>130</epage><pages>111-130</pages><issn>1471-003X</issn><issn>1471-0048</issn><eissn>1471-0048</eissn><eissn>1469-3178</eissn><abstract>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings. Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38191721</pmid><doi>10.1038/s41583-023-00779-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2439-350X</orcidid><orcidid>https://orcid.org/0000-0003-3543-3706</orcidid><orcidid>https://orcid.org/0000-0003-0203-3909</orcidid><orcidid>https://orcid.org/0000-0002-7772-781X</orcidid><orcidid>https://orcid.org/0000-0002-3583-3630</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1471-003X
ispartof Nature reviews. Neuroscience, 2024-02, Vol.25 (2), p.111-130
issn 1471-003X
1471-0048
1471-0048
1469-3178
language eng
recordid cdi_proquest_miscellaneous_2912525372
source Nature
subjects 631/378/116
692/617/375
Alzheimer Disease
Alzheimer's disease
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomarkers
Biomedical and Life Sciences
Biomedicine
Computational neuroscience
Disease
Disease Progression
Humans
Learning algorithms
Machine learning
Neurobiology
Neurodegenerative Diseases
Neurosciences
Parameter estimation
Review Article
Reviews
title Data-driven modelling of neurodegenerative disease progression: thinking outside the black box
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20modelling%20of%20neurodegenerative%20disease%20progression:%20thinking%20outside%20the%20black%20box&rft.jtitle=Nature%20reviews.%20Neuroscience&rft.au=Young,%20Alexandra%20L.&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=111&rft.epage=130&rft.pages=111-130&rft.issn=1471-003X&rft.eissn=1471-0048&rft_id=info:doi/10.1038/s41583-023-00779-6&rft_dat=%3Cproquest_cross%3E2918140178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918140178&rft_id=info:pmid/38191721&rfr_iscdi=true