Loading…
Data-driven modelling of neurodegenerative disease progression: thinking outside the black box
Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with la...
Saved in:
Published in: | Nature reviews. Neuroscience 2024-02, Vol.25 (2), p.111-130 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83 |
container_end_page | 130 |
container_issue | 2 |
container_start_page | 111 |
container_title | Nature reviews. Neuroscience |
container_volume | 25 |
creator | Young, Alexandra L. Oxtoby, Neil P. Garbarino, Sara Fox, Nick C. Barkhof, Frederik Schott, Jonathan M. Alexander, Daniel C. |
description | Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease. |
doi_str_mv | 10.1038/s41583-023-00779-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912525372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918140178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRuH79AQ-miRcvVQZKYb2Z9TMx8aKJJwkt09q1SxVao_9e9kNNPHggMDPPvDO8hOwDPQbK1UnIQCieUhYPlXKc5mtkCzIJMczU-s-bP47IdghTSiEHmW-SEVcwBslgizydm96k1jfv6JJZZ7FtG1cnXZU4HHyMa3ToTR_riW0CmoDJq-9qjyE0nTtN-ufGvSxahj40FmMCk6I15UtSdB-7ZKMybcC91b1DHi4v7ifX6e3d1c3k7DYtuRR9mtuMKlZaq7jiuZWVEEoqyHJUwkhmcgYM5VgKVmHJDBgOwKiRUFAhZKH4Djla6sbd3gYMvZ41oYyfMQ67IWg2BiaY4JJF9PAPOu0G7-J2cyoOpSDngmxJlb4LwWOlX30zM_5TA9Vz9_XSfR3d1wv3dR6bDlbSQzFD-9PybXcE-BIIseRq9L-z_5H9AlH0jyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918140178</pqid></control><display><type>article</type><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><source>Nature</source><creator>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</creator><creatorcontrib>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</creatorcontrib><description>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</description><identifier>ISSN: 1471-003X</identifier><identifier>ISSN: 1471-0048</identifier><identifier>EISSN: 1471-0048</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/s41583-023-00779-6</identifier><identifier>PMID: 38191721</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116 ; 692/617/375 ; Alzheimer Disease ; Alzheimer's disease ; Animal Genetics and Genomics ; Behavioral Sciences ; Biological Techniques ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Computational neuroscience ; Disease ; Disease Progression ; Humans ; Learning algorithms ; Machine learning ; Neurobiology ; Neurodegenerative Diseases ; Neurosciences ; Parameter estimation ; Review Article ; Reviews</subject><ispartof>Nature reviews. Neuroscience, 2024-02, Vol.25 (2), p.111-130</ispartof><rights>Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</citedby><cites>FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</cites><orcidid>0000-0003-2439-350X ; 0000-0003-3543-3706 ; 0000-0003-0203-3909 ; 0000-0002-7772-781X ; 0000-0002-3583-3630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38191721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Alexandra L.</creatorcontrib><creatorcontrib>Oxtoby, Neil P.</creatorcontrib><creatorcontrib>Garbarino, Sara</creatorcontrib><creatorcontrib>Fox, Nick C.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><title>Nature reviews. Neuroscience</title><addtitle>Nat. Rev. Neurosci</addtitle><addtitle>Nat Rev Neurosci</addtitle><description>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</description><subject>631/378/116</subject><subject>692/617/375</subject><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Animal Genetics and Genomics</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Computational neuroscience</subject><subject>Disease</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neurobiology</subject><subject>Neurodegenerative Diseases</subject><subject>Neurosciences</subject><subject>Parameter estimation</subject><subject>Review Article</subject><subject>Reviews</subject><issn>1471-003X</issn><issn>1471-0048</issn><issn>1471-0048</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRuH79AQ-miRcvVQZKYb2Z9TMx8aKJJwkt09q1SxVao_9e9kNNPHggMDPPvDO8hOwDPQbK1UnIQCieUhYPlXKc5mtkCzIJMczU-s-bP47IdghTSiEHmW-SEVcwBslgizydm96k1jfv6JJZZ7FtG1cnXZU4HHyMa3ToTR_riW0CmoDJq-9qjyE0nTtN-ufGvSxahj40FmMCk6I15UtSdB-7ZKMybcC91b1DHi4v7ifX6e3d1c3k7DYtuRR9mtuMKlZaq7jiuZWVEEoqyHJUwkhmcgYM5VgKVmHJDBgOwKiRUFAhZKH4Djla6sbd3gYMvZ41oYyfMQ67IWg2BiaY4JJF9PAPOu0G7-J2cyoOpSDngmxJlb4LwWOlX30zM_5TA9Vz9_XSfR3d1wv3dR6bDlbSQzFD-9PybXcE-BIIseRq9L-z_5H9AlH0jyU</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Young, Alexandra L.</creator><creator>Oxtoby, Neil P.</creator><creator>Garbarino, Sara</creator><creator>Fox, Nick C.</creator><creator>Barkhof, Frederik</creator><creator>Schott, Jonathan M.</creator><creator>Alexander, Daniel C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2439-350X</orcidid><orcidid>https://orcid.org/0000-0003-3543-3706</orcidid><orcidid>https://orcid.org/0000-0003-0203-3909</orcidid><orcidid>https://orcid.org/0000-0002-7772-781X</orcidid><orcidid>https://orcid.org/0000-0002-3583-3630</orcidid></search><sort><creationdate>20240201</creationdate><title>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</title><author>Young, Alexandra L. ; Oxtoby, Neil P. ; Garbarino, Sara ; Fox, Nick C. ; Barkhof, Frederik ; Schott, Jonathan M. ; Alexander, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/378/116</topic><topic>692/617/375</topic><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Animal Genetics and Genomics</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Computational neuroscience</topic><topic>Disease</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neurobiology</topic><topic>Neurodegenerative Diseases</topic><topic>Neurosciences</topic><topic>Parameter estimation</topic><topic>Review Article</topic><topic>Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Alexandra L.</creatorcontrib><creatorcontrib>Oxtoby, Neil P.</creatorcontrib><creatorcontrib>Garbarino, Sara</creatorcontrib><creatorcontrib>Fox, Nick C.</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><creatorcontrib>Schott, Jonathan M.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature reviews. Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Alexandra L.</au><au>Oxtoby, Neil P.</au><au>Garbarino, Sara</au><au>Fox, Nick C.</au><au>Barkhof, Frederik</au><au>Schott, Jonathan M.</au><au>Alexander, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven modelling of neurodegenerative disease progression: thinking outside the black box</atitle><jtitle>Nature reviews. Neuroscience</jtitle><stitle>Nat. Rev. Neurosci</stitle><addtitle>Nat Rev Neurosci</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>111</spage><epage>130</epage><pages>111-130</pages><issn>1471-003X</issn><issn>1471-0048</issn><eissn>1471-0048</eissn><eissn>1469-3178</eissn><abstract>Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to ‘black box’ machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Data-driven disease progression models are computational tools that infer long-term disease timelines from short-term biomarker data and may provide insights into disease processes. In this Review, Young, Oxtoby et al. provide an overview of such models, with a focus on how they have been used in the context of neurodegenerative diseases, notably Alzheimer disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38191721</pmid><doi>10.1038/s41583-023-00779-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2439-350X</orcidid><orcidid>https://orcid.org/0000-0003-3543-3706</orcidid><orcidid>https://orcid.org/0000-0003-0203-3909</orcidid><orcidid>https://orcid.org/0000-0002-7772-781X</orcidid><orcidid>https://orcid.org/0000-0002-3583-3630</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-003X |
ispartof | Nature reviews. Neuroscience, 2024-02, Vol.25 (2), p.111-130 |
issn | 1471-003X 1471-0048 1471-0048 1469-3178 |
language | eng |
recordid | cdi_proquest_miscellaneous_2912525372 |
source | Nature |
subjects | 631/378/116 692/617/375 Alzheimer Disease Alzheimer's disease Animal Genetics and Genomics Behavioral Sciences Biological Techniques Biomarkers Biomedical and Life Sciences Biomedicine Computational neuroscience Disease Disease Progression Humans Learning algorithms Machine learning Neurobiology Neurodegenerative Diseases Neurosciences Parameter estimation Review Article Reviews |
title | Data-driven modelling of neurodegenerative disease progression: thinking outside the black box |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20modelling%20of%20neurodegenerative%20disease%20progression:%20thinking%20outside%20the%20black%20box&rft.jtitle=Nature%20reviews.%20Neuroscience&rft.au=Young,%20Alexandra%20L.&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=111&rft.epage=130&rft.pages=111-130&rft.issn=1471-003X&rft.eissn=1471-0048&rft_id=info:doi/10.1038/s41583-023-00779-6&rft_dat=%3Cproquest_cross%3E2918140178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-6d4082cdd83836d7f55878146e85a72a6212e79752fec2a1a31120a71b0557b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918140178&rft_id=info:pmid/38191721&rfr_iscdi=true |