Loading…

Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net

Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement,...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2024-05, Vol.91 (5), p.2044-2056
Main Authors: Motyka, Stanislav, Weiser, Paul, Bachrata, Beata, Hingerl, Lukas, Strasser, Bernhard, Hangel, Gilbert, Niess, Eva, Niess, Fabian, Zaitsev, Maxim, Robinson, Simon Daniel, Langs, Georg, Trattnig, Siegfried, Bogner, Wolfgang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2056
container_issue 5
container_start_page 2044
container_title Magnetic resonance in medicine
container_volume 91
creator Motyka, Stanislav
Weiser, Paul
Bachrata, Beata
Hingerl, Lukas
Strasser, Bernhard
Hangel, Gilbert
Niess, Eva
Niess, Fabian
Zaitsev, Maxim
Robinson, Simon Daniel
Langs, Georg
Trattnig, Siegfried
Bogner, Wolfgang
description Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. Methods We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data. Results Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method. Conclusion It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.
doi_str_mv 10.1002/mrm.29980
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912528019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912528019</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3</originalsourceid><addsrcrecordid>eNpdkT1OAzEQhS0EEiFQcANLNBRssL1OvC4B8ScRgRDUK689ThztesPaK5SOhp4j5CwchZPgABXVvBl982akh9AhJSNKCDttumbEpCzIFhrQMWMZG0u-jQZEcJLlVPJdtBfCghAipeAD9P7QgXE6Oj_DZuVV4_QJbtroWv_19tFBrSIYrOfKzyBg5_E5wdZBbZL-XMc54KpTaawiVlg84enjLe7Dxk3h0FcL0DH5hCVoZ51Oqx5SHzc7YD7Xz6nxEPfRjlV1gIO_OkTPV5dPFzfZ3f317cXZXbZkkpJMCTOm1kyErXKoKk0tECNIxbkklnMFVFkhuKZCC80F5EWuK6ELJqid0MrkQ3T867vs2pceQiwbFzTUtfLQ9qFMV9iYFYTKhB79Qxdt3_n0XaImgrJC8CJRp7_Uq6thVS4716huVVJSbtIoUxrlTxrl9HH6I_JvGhWE0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967128748</pqid></control><display><type>article</type><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><source>Wiley</source><creator>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</creator><creatorcontrib>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</creatorcontrib><description>Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. Methods We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data. Results Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method. Conclusion It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29980</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial neural network ; B0 inhomogeneities ; Brain ; Brain mapping ; Deep learning ; Head ; Homogeneity ; Magnetic fields ; Magnetic resonance imaging ; Medical imaging ; motion correction ; patient movement ; Spatial discrimination ; Spatial resolution ; U‐net</subject><ispartof>Magnetic resonance in medicine, 2024-05, Vol.91 (5), p.2044-2056</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7530-1228 ; 0000-0002-3352-8966 ; 0000-0002-0130-3463 ; 0000-0003-1235-7595 ; 0000-0001-9956-1470 ; 0000-0002-6314-316X ; 0000-0003-1623-3303 ; 0000-0003-1808-8349 ; 0000-0001-7463-5162 ; 0000-0002-5536-6873 ; 0000-0001-9542-3855 ; 0000-0002-3986-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Motyka, Stanislav</creatorcontrib><creatorcontrib>Weiser, Paul</creatorcontrib><creatorcontrib>Bachrata, Beata</creatorcontrib><creatorcontrib>Hingerl, Lukas</creatorcontrib><creatorcontrib>Strasser, Bernhard</creatorcontrib><creatorcontrib>Hangel, Gilbert</creatorcontrib><creatorcontrib>Niess, Eva</creatorcontrib><creatorcontrib>Niess, Fabian</creatorcontrib><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Robinson, Simon Daniel</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Bogner, Wolfgang</creatorcontrib><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><title>Magnetic resonance in medicine</title><description>Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. Methods We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data. Results Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method. Conclusion It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</description><subject>artificial neural network</subject><subject>B0 inhomogeneities</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Deep learning</subject><subject>Head</subject><subject>Homogeneity</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>motion correction</subject><subject>patient movement</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>U‐net</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkT1OAzEQhS0EEiFQcANLNBRssL1OvC4B8ScRgRDUK689ThztesPaK5SOhp4j5CwchZPgABXVvBl982akh9AhJSNKCDttumbEpCzIFhrQMWMZG0u-jQZEcJLlVPJdtBfCghAipeAD9P7QgXE6Oj_DZuVV4_QJbtroWv_19tFBrSIYrOfKzyBg5_E5wdZBbZL-XMc54KpTaawiVlg84enjLe7Dxk3h0FcL0DH5hCVoZ51Oqx5SHzc7YD7Xz6nxEPfRjlV1gIO_OkTPV5dPFzfZ3f317cXZXbZkkpJMCTOm1kyErXKoKk0tECNIxbkklnMFVFkhuKZCC80F5EWuK6ELJqid0MrkQ3T867vs2pceQiwbFzTUtfLQ9qFMV9iYFYTKhB79Qxdt3_n0XaImgrJC8CJRp7_Uq6thVS4716huVVJSbtIoUxrlTxrl9HH6I_JvGhWE0A</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Motyka, Stanislav</creator><creator>Weiser, Paul</creator><creator>Bachrata, Beata</creator><creator>Hingerl, Lukas</creator><creator>Strasser, Bernhard</creator><creator>Hangel, Gilbert</creator><creator>Niess, Eva</creator><creator>Niess, Fabian</creator><creator>Zaitsev, Maxim</creator><creator>Robinson, Simon Daniel</creator><creator>Langs, Georg</creator><creator>Trattnig, Siegfried</creator><creator>Bogner, Wolfgang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7530-1228</orcidid><orcidid>https://orcid.org/0000-0002-3352-8966</orcidid><orcidid>https://orcid.org/0000-0002-0130-3463</orcidid><orcidid>https://orcid.org/0000-0003-1235-7595</orcidid><orcidid>https://orcid.org/0000-0001-9956-1470</orcidid><orcidid>https://orcid.org/0000-0002-6314-316X</orcidid><orcidid>https://orcid.org/0000-0003-1623-3303</orcidid><orcidid>https://orcid.org/0000-0003-1808-8349</orcidid><orcidid>https://orcid.org/0000-0001-7463-5162</orcidid><orcidid>https://orcid.org/0000-0002-5536-6873</orcidid><orcidid>https://orcid.org/0000-0001-9542-3855</orcidid><orcidid>https://orcid.org/0000-0002-3986-3159</orcidid></search><sort><creationdate>202405</creationdate><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><author>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial neural network</topic><topic>B0 inhomogeneities</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Deep learning</topic><topic>Head</topic><topic>Homogeneity</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>motion correction</topic><topic>patient movement</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>U‐net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motyka, Stanislav</creatorcontrib><creatorcontrib>Weiser, Paul</creatorcontrib><creatorcontrib>Bachrata, Beata</creatorcontrib><creatorcontrib>Hingerl, Lukas</creatorcontrib><creatorcontrib>Strasser, Bernhard</creatorcontrib><creatorcontrib>Hangel, Gilbert</creatorcontrib><creatorcontrib>Niess, Eva</creatorcontrib><creatorcontrib>Niess, Fabian</creatorcontrib><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Robinson, Simon Daniel</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Bogner, Wolfgang</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motyka, Stanislav</au><au>Weiser, Paul</au><au>Bachrata, Beata</au><au>Hingerl, Lukas</au><au>Strasser, Bernhard</au><au>Hangel, Gilbert</au><au>Niess, Eva</au><au>Niess, Fabian</au><au>Zaitsev, Maxim</au><au>Robinson, Simon Daniel</au><au>Langs, Georg</au><au>Trattnig, Siegfried</au><au>Bogner, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2024-05</date><risdate>2024</risdate><volume>91</volume><issue>5</issue><spage>2044</spage><epage>2056</epage><pages>2044-2056</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. Methods We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data. Results Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method. Conclusion It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mrm.29980</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7530-1228</orcidid><orcidid>https://orcid.org/0000-0002-3352-8966</orcidid><orcidid>https://orcid.org/0000-0002-0130-3463</orcidid><orcidid>https://orcid.org/0000-0003-1235-7595</orcidid><orcidid>https://orcid.org/0000-0001-9956-1470</orcidid><orcidid>https://orcid.org/0000-0002-6314-316X</orcidid><orcidid>https://orcid.org/0000-0003-1623-3303</orcidid><orcidid>https://orcid.org/0000-0003-1808-8349</orcidid><orcidid>https://orcid.org/0000-0001-7463-5162</orcidid><orcidid>https://orcid.org/0000-0002-5536-6873</orcidid><orcidid>https://orcid.org/0000-0001-9542-3855</orcidid><orcidid>https://orcid.org/0000-0002-3986-3159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-05, Vol.91 (5), p.2044-2056
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2912528019
source Wiley
subjects artificial neural network
B0 inhomogeneities
Brain
Brain mapping
Deep learning
Head
Homogeneity
Magnetic fields
Magnetic resonance imaging
Medical imaging
motion correction
patient movement
Spatial discrimination
Spatial resolution
U‐net
title Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20dynamic,%20motion%E2%80%90related%20changes%20in%20B0%20field%20in%C2%A0the%20brain%20at%20a%207T%20MRI%20using%20a%20subject%E2%80%90specific%20fine%E2%80%90trained%C2%A0U%E2%80%90net&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Motyka,%20Stanislav&rft.date=2024-05&rft.volume=91&rft.issue=5&rft.spage=2044&rft.epage=2056&rft.pages=2044-2056&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29980&rft_dat=%3Cproquest_wiley%3E2912528019%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2967128748&rft_id=info:pmid/&rfr_iscdi=true