Loading…
Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net
Purpose Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement,...
Saved in:
Published in: | Magnetic resonance in medicine 2024-05, Vol.91 (5), p.2044-2056 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2056 |
container_issue | 5 |
container_start_page | 2044 |
container_title | Magnetic resonance in medicine |
container_volume | 91 |
creator | Motyka, Stanislav Weiser, Paul Bachrata, Beata Hingerl, Lukas Strasser, Bernhard Hangel, Gilbert Niess, Eva Niess, Fabian Zaitsev, Maxim Robinson, Simon Daniel Langs, Georg Trattnig, Siegfried Bogner, Wolfgang |
description | Purpose
Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities.
Methods
We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data.
Results
Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method.
Conclusion
It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators. |
doi_str_mv | 10.1002/mrm.29980 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912528019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912528019</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3</originalsourceid><addsrcrecordid>eNpdkT1OAzEQhS0EEiFQcANLNBRssL1OvC4B8ScRgRDUK689ThztesPaK5SOhp4j5CwchZPgABXVvBl982akh9AhJSNKCDttumbEpCzIFhrQMWMZG0u-jQZEcJLlVPJdtBfCghAipeAD9P7QgXE6Oj_DZuVV4_QJbtroWv_19tFBrSIYrOfKzyBg5_E5wdZBbZL-XMc54KpTaawiVlg84enjLe7Dxk3h0FcL0DH5hCVoZ51Oqx5SHzc7YD7Xz6nxEPfRjlV1gIO_OkTPV5dPFzfZ3f317cXZXbZkkpJMCTOm1kyErXKoKk0tECNIxbkklnMFVFkhuKZCC80F5EWuK6ELJqid0MrkQ3T867vs2pceQiwbFzTUtfLQ9qFMV9iYFYTKhB79Qxdt3_n0XaImgrJC8CJRp7_Uq6thVS4716huVVJSbtIoUxrlTxrl9HH6I_JvGhWE0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2967128748</pqid></control><display><type>article</type><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><source>Wiley</source><creator>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</creator><creatorcontrib>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</creatorcontrib><description>Purpose
Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities.
Methods
We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data.
Results
Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method.
Conclusion
It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.29980</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>artificial neural network ; B0 inhomogeneities ; Brain ; Brain mapping ; Deep learning ; Head ; Homogeneity ; Magnetic fields ; Magnetic resonance imaging ; Medical imaging ; motion correction ; patient movement ; Spatial discrimination ; Spatial resolution ; U‐net</subject><ispartof>Magnetic resonance in medicine, 2024-05, Vol.91 (5), p.2044-2056</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7530-1228 ; 0000-0002-3352-8966 ; 0000-0002-0130-3463 ; 0000-0003-1235-7595 ; 0000-0001-9956-1470 ; 0000-0002-6314-316X ; 0000-0003-1623-3303 ; 0000-0003-1808-8349 ; 0000-0001-7463-5162 ; 0000-0002-5536-6873 ; 0000-0001-9542-3855 ; 0000-0002-3986-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Motyka, Stanislav</creatorcontrib><creatorcontrib>Weiser, Paul</creatorcontrib><creatorcontrib>Bachrata, Beata</creatorcontrib><creatorcontrib>Hingerl, Lukas</creatorcontrib><creatorcontrib>Strasser, Bernhard</creatorcontrib><creatorcontrib>Hangel, Gilbert</creatorcontrib><creatorcontrib>Niess, Eva</creatorcontrib><creatorcontrib>Niess, Fabian</creatorcontrib><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Robinson, Simon Daniel</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Bogner, Wolfgang</creatorcontrib><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><title>Magnetic resonance in medicine</title><description>Purpose
Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities.
Methods
We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data.
Results
Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method.
Conclusion
It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</description><subject>artificial neural network</subject><subject>B0 inhomogeneities</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Deep learning</subject><subject>Head</subject><subject>Homogeneity</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>motion correction</subject><subject>patient movement</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>U‐net</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkT1OAzEQhS0EEiFQcANLNBRssL1OvC4B8ScRgRDUK689ThztesPaK5SOhp4j5CwchZPgABXVvBl982akh9AhJSNKCDttumbEpCzIFhrQMWMZG0u-jQZEcJLlVPJdtBfCghAipeAD9P7QgXE6Oj_DZuVV4_QJbtroWv_19tFBrSIYrOfKzyBg5_E5wdZBbZL-XMc54KpTaawiVlg84enjLe7Dxk3h0FcL0DH5hCVoZ51Oqx5SHzc7YD7Xz6nxEPfRjlV1gIO_OkTPV5dPFzfZ3f317cXZXbZkkpJMCTOm1kyErXKoKk0tECNIxbkklnMFVFkhuKZCC80F5EWuK6ELJqid0MrkQ3T867vs2pceQiwbFzTUtfLQ9qFMV9iYFYTKhB79Qxdt3_n0XaImgrJC8CJRp7_Uq6thVS4716huVVJSbtIoUxrlTxrl9HH6I_JvGhWE0A</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Motyka, Stanislav</creator><creator>Weiser, Paul</creator><creator>Bachrata, Beata</creator><creator>Hingerl, Lukas</creator><creator>Strasser, Bernhard</creator><creator>Hangel, Gilbert</creator><creator>Niess, Eva</creator><creator>Niess, Fabian</creator><creator>Zaitsev, Maxim</creator><creator>Robinson, Simon Daniel</creator><creator>Langs, Georg</creator><creator>Trattnig, Siegfried</creator><creator>Bogner, Wolfgang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7530-1228</orcidid><orcidid>https://orcid.org/0000-0002-3352-8966</orcidid><orcidid>https://orcid.org/0000-0002-0130-3463</orcidid><orcidid>https://orcid.org/0000-0003-1235-7595</orcidid><orcidid>https://orcid.org/0000-0001-9956-1470</orcidid><orcidid>https://orcid.org/0000-0002-6314-316X</orcidid><orcidid>https://orcid.org/0000-0003-1623-3303</orcidid><orcidid>https://orcid.org/0000-0003-1808-8349</orcidid><orcidid>https://orcid.org/0000-0001-7463-5162</orcidid><orcidid>https://orcid.org/0000-0002-5536-6873</orcidid><orcidid>https://orcid.org/0000-0001-9542-3855</orcidid><orcidid>https://orcid.org/0000-0002-3986-3159</orcidid></search><sort><creationdate>202405</creationdate><title>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</title><author>Motyka, Stanislav ; Weiser, Paul ; Bachrata, Beata ; Hingerl, Lukas ; Strasser, Bernhard ; Hangel, Gilbert ; Niess, Eva ; Niess, Fabian ; Zaitsev, Maxim ; Robinson, Simon Daniel ; Langs, Georg ; Trattnig, Siegfried ; Bogner, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>artificial neural network</topic><topic>B0 inhomogeneities</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Deep learning</topic><topic>Head</topic><topic>Homogeneity</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>motion correction</topic><topic>patient movement</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>U‐net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motyka, Stanislav</creatorcontrib><creatorcontrib>Weiser, Paul</creatorcontrib><creatorcontrib>Bachrata, Beata</creatorcontrib><creatorcontrib>Hingerl, Lukas</creatorcontrib><creatorcontrib>Strasser, Bernhard</creatorcontrib><creatorcontrib>Hangel, Gilbert</creatorcontrib><creatorcontrib>Niess, Eva</creatorcontrib><creatorcontrib>Niess, Fabian</creatorcontrib><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Robinson, Simon Daniel</creatorcontrib><creatorcontrib>Langs, Georg</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Bogner, Wolfgang</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motyka, Stanislav</au><au>Weiser, Paul</au><au>Bachrata, Beata</au><au>Hingerl, Lukas</au><au>Strasser, Bernhard</au><au>Hangel, Gilbert</au><au>Niess, Eva</au><au>Niess, Fabian</au><au>Zaitsev, Maxim</au><au>Robinson, Simon Daniel</au><au>Langs, Georg</au><au>Trattnig, Siegfried</au><au>Bogner, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net</atitle><jtitle>Magnetic resonance in medicine</jtitle><date>2024-05</date><risdate>2024</risdate><volume>91</volume><issue>5</issue><spage>2044</spage><epage>2056</epage><pages>2044-2056</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0), which is a prerequisite for high quality data. Thus, characterization of changes to B0, for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities.
Methods
We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real‐time correction. A 3D U‐net was trained on in vivo gradient‐echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid‐body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine‐trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U‐net with these data.
Results
Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator‐equivalent method and proposed method.
Conclusion
It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mrm.29980</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7530-1228</orcidid><orcidid>https://orcid.org/0000-0002-3352-8966</orcidid><orcidid>https://orcid.org/0000-0002-0130-3463</orcidid><orcidid>https://orcid.org/0000-0003-1235-7595</orcidid><orcidid>https://orcid.org/0000-0001-9956-1470</orcidid><orcidid>https://orcid.org/0000-0002-6314-316X</orcidid><orcidid>https://orcid.org/0000-0003-1623-3303</orcidid><orcidid>https://orcid.org/0000-0003-1808-8349</orcidid><orcidid>https://orcid.org/0000-0001-7463-5162</orcidid><orcidid>https://orcid.org/0000-0002-5536-6873</orcidid><orcidid>https://orcid.org/0000-0001-9542-3855</orcidid><orcidid>https://orcid.org/0000-0002-3986-3159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2024-05, Vol.91 (5), p.2044-2056 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2912528019 |
source | Wiley |
subjects | artificial neural network B0 inhomogeneities Brain Brain mapping Deep learning Head Homogeneity Magnetic fields Magnetic resonance imaging Medical imaging motion correction patient movement Spatial discrimination Spatial resolution U‐net |
title | Predicting dynamic, motion‐related changes in B0 field in the brain at a 7T MRI using a subject‐specific fine‐trained U‐net |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20dynamic,%20motion%E2%80%90related%20changes%20in%20B0%20field%20in%C2%A0the%20brain%20at%20a%207T%20MRI%20using%20a%20subject%E2%80%90specific%20fine%E2%80%90trained%C2%A0U%E2%80%90net&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Motyka,%20Stanislav&rft.date=2024-05&rft.volume=91&rft.issue=5&rft.spage=2044&rft.epage=2056&rft.pages=2044-2056&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.29980&rft_dat=%3Cproquest_wiley%3E2912528019%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2910-a7d51fd67fb3ebbc1fe0d70b4490f44ae1af774c17c7c47e383cb7c8271f61bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2967128748&rft_id=info:pmid/&rfr_iscdi=true |