Loading…
An ER‐targeted, Viscosity‐sensitive Hemicyanine Dye for the Diagnosis of Nonalcoholic Fatty Liver and Photodynamic Cancer Therapy by Activating Pyroptosis Pathway
The concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER‐ZS for endoplasmic reticulum (ER)‐targeted diagnosis and treatment in cell and animal models by combini...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-02, Vol.63 (9), p.e202316487-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER‐ZS for endoplasmic reticulum (ER)‐targeted diagnosis and treatment in cell and animal models by combining hemicyanine dyes with ER‐targeted functional groups (p‐toluenesulfonamide). Owing to its ability to target the ER with a highly specific response to viscosity, ER‐ZS demonstrated substantial fluorescence turn‐on only after binding to the ER, independent of other physiological environments. In addition, ER‐ZS, being a small molecule, allows for the diagnosis of nonalcoholic fatty liver disease (NAFLD) via liver imaging based on high ER stress. Importantly, ER‐ZS is a type I photosensitizer, producing O2⋅− and ⋅OH under light irradiation. Thus, after irradiating for a certain period, the photodynamic therapy inflicted severe oxidative damage to the ER of tumor cells in hypoxic (2 % O2) conditions and activated the unique pyroptosis pathway, demonstrating excellent antitumor capacity in xenograft tumor models. Hence, the proposed strategy will likely shed new light on integrating molecular optics for NAFLD diagnosis and cancer therapy.
We report a viscosity‐sensitive, endoplasmic reticulum (ER)‐targeting fluorescent probe, ER‐ZS, which can monitor ER stress‐induced viscosity changes in real time. ER‐ZS is also an excellent anti‐hypoxia type I photosensitizer that activates tumor cell pyroptosis by damaging the ER pathway. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202316487 |