Loading…
AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations
•ChatGPT provides reasonably accurate nutritional data for diet management.•ChatGPT has high accuracy with caloric values close to the United States Department of Agriculture data.•Consistent nutrient data from ChatGPT are supported by low variation. We investigate the accuracy and reliability of Ch...
Saved in:
Published in: | Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2024-03, Vol.119, p.112325-112325, Article 112325 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 112325 |
container_issue | |
container_start_page | 112325 |
container_title | Nutrition (Burbank, Los Angeles County, Calif.) |
container_volume | 119 |
creator | Haman, Michael Školník, Milan Lošťák, Michal |
description | •ChatGPT provides reasonably accurate nutritional data for diet management.•ChatGPT has high accuracy with caloric values close to the United States Department of Agriculture data.•Consistent nutrient data from ChatGPT are supported by low variation.
We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals. |
doi_str_mv | 10.1016/j.nut.2023.112325 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2913083885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899900723003532</els_id><sourcerecordid>2923332263</sourcerecordid><originalsourceid>FETCH-LOGICAL-e221t-b435a5dee54cf44b565fc4cbec307cd1747632af4e71380aaac9447c3e4681e63</originalsourceid><addsrcrecordid>eNpdkU9Lw0AQxRdRbK1-AC8S8KCXxN2dzZ_VUylaCwU9tOdls5nYLWmi2aTQb--G1ouHYRj4MTPvPUJuGY0YZcnTNqr7LuKUQ8QYBx6fkTHLUggZF-KcjGkmZSgpTUfkyrktpZTJRF6SEWRMCl9jspgugsJiZ43V9XOwrvdoK1t_Bd0GA21M32pzCJoymG10N_9cPbjA32xtZ5taVwG6zu70MLhrclHqyuHNqU_I-u11NXsPlx_zxWy6DJFz1oW5gFjHBWIsTClEHidxaYTJ0QBNTcFSkSbAdSkwZZBRrbWRQqQGUCQZwwQm5PG497ttfnr_gNpZZ7CqdI1N7xSXDGgGWRZ79P4fum361v89UBwAOE_AU3cnqs93WKjv1ktqD-rPJA-8HAH0svYWW-WMxdpgYVs0nSoaqxhVQyRqq7w9aohEHSOBX4vCfIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923332263</pqid></control><display><type>article</type><title>AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations</title><source>ScienceDirect Freedom Collection</source><creator>Haman, Michael ; Školník, Milan ; Lošťák, Michal</creator><creatorcontrib>Haman, Michael ; Školník, Milan ; Lošťák, Michal</creatorcontrib><description>•ChatGPT provides reasonably accurate nutritional data for diet management.•ChatGPT has high accuracy with caloric values close to the United States Department of Agriculture data.•Consistent nutrient data from ChatGPT are supported by low variation.
We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals.<END ABSTRACT></description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2023.112325</identifier><identifier>PMID: 38194819</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Agriculture ; Artificial intelligence ; Calories ; Carbohydrates ; Chatbots ; ChatGPT ; Chronic illnesses ; Coefficient of variation ; Diabetes ; Diet ; Dietary planning ; Energy ; Energy value ; False information ; Food ; Lipids ; Meals ; Nutrients ; Nutrition research ; Nutritional data ; Planning ; Proteins ; Public health ; Weight control ; Weight management</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2024-03, Vol.119, p.112325-112325, Article 112325</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><rights>2023. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5772-2045 ; 0000-0003-0392-0702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haman, Michael</creatorcontrib><creatorcontrib>Školník, Milan</creatorcontrib><creatorcontrib>Lošťák, Michal</creatorcontrib><title>AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><addtitle>Nutrition</addtitle><description>•ChatGPT provides reasonably accurate nutritional data for diet management.•ChatGPT has high accuracy with caloric values close to the United States Department of Agriculture data.•Consistent nutrient data from ChatGPT are supported by low variation.
We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals.<END ABSTRACT></description><subject>Accuracy</subject><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Calories</subject><subject>Carbohydrates</subject><subject>Chatbots</subject><subject>ChatGPT</subject><subject>Chronic illnesses</subject><subject>Coefficient of variation</subject><subject>Diabetes</subject><subject>Diet</subject><subject>Dietary planning</subject><subject>Energy</subject><subject>Energy value</subject><subject>False information</subject><subject>Food</subject><subject>Lipids</subject><subject>Meals</subject><subject>Nutrients</subject><subject>Nutrition research</subject><subject>Nutritional data</subject><subject>Planning</subject><subject>Proteins</subject><subject>Public health</subject><subject>Weight control</subject><subject>Weight management</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU9Lw0AQxRdRbK1-AC8S8KCXxN2dzZ_VUylaCwU9tOdls5nYLWmi2aTQb--G1ouHYRj4MTPvPUJuGY0YZcnTNqr7LuKUQ8QYBx6fkTHLUggZF-KcjGkmZSgpTUfkyrktpZTJRF6SEWRMCl9jspgugsJiZ43V9XOwrvdoK1t_Bd0GA21M32pzCJoymG10N_9cPbjA32xtZ5taVwG6zu70MLhrclHqyuHNqU_I-u11NXsPlx_zxWy6DJFz1oW5gFjHBWIsTClEHidxaYTJ0QBNTcFSkSbAdSkwZZBRrbWRQqQGUCQZwwQm5PG497ttfnr_gNpZZ7CqdI1N7xSXDGgGWRZ79P4fum361v89UBwAOE_AU3cnqs93WKjv1ktqD-rPJA-8HAH0svYWW-WMxdpgYVs0nSoaqxhVQyRqq7w9aohEHSOBX4vCfIU</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Haman, Michael</creator><creator>Školník, Milan</creator><creator>Lošťák, Michal</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5772-2045</orcidid><orcidid>https://orcid.org/0000-0003-0392-0702</orcidid></search><sort><creationdate>202403</creationdate><title>AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations</title><author>Haman, Michael ; Školník, Milan ; Lošťák, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e221t-b435a5dee54cf44b565fc4cbec307cd1747632af4e71380aaac9447c3e4681e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Calories</topic><topic>Carbohydrates</topic><topic>Chatbots</topic><topic>ChatGPT</topic><topic>Chronic illnesses</topic><topic>Coefficient of variation</topic><topic>Diabetes</topic><topic>Diet</topic><topic>Dietary planning</topic><topic>Energy</topic><topic>Energy value</topic><topic>False information</topic><topic>Food</topic><topic>Lipids</topic><topic>Meals</topic><topic>Nutrients</topic><topic>Nutrition research</topic><topic>Nutritional data</topic><topic>Planning</topic><topic>Proteins</topic><topic>Public health</topic><topic>Weight control</topic><topic>Weight management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haman, Michael</creatorcontrib><creatorcontrib>Školník, Milan</creatorcontrib><creatorcontrib>Lošťák, Michal</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Career and Technical Education (ProQuest Database)</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Health Management</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haman, Michael</au><au>Školník, Milan</au><au>Lošťák, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><addtitle>Nutrition</addtitle><date>2024-03</date><risdate>2024</risdate><volume>119</volume><spage>112325</spage><epage>112325</epage><pages>112325-112325</pages><artnum>112325</artnum><issn>0899-9007</issn><eissn>1873-1244</eissn><abstract>•ChatGPT provides reasonably accurate nutritional data for diet management.•ChatGPT has high accuracy with caloric values close to the United States Department of Agriculture data.•Consistent nutrient data from ChatGPT are supported by low variation.
We investigate the accuracy and reliability of ChatGPT, an artificial intelligence model developed by OpenAI, in providing nutritional information for dietary planning and weight management. The results have a reasonable level of accuracy, with energy values having the highest level of conformity: 97% of the artificial intelligence values fall within a 40% difference from United States Department of Agriculture data. Additionally, ChatGPT displayed consistency in its provision of nutritional data, as indicated by relatively low coefficient of variation values for each nutrient. The artificial intelligence model also proved efficient in generating a daily meal plan within a specified caloric limit, with all the meals falling within a 30% bound of the United States Department of Agriculture's caloric values. These findings suggest that ChatGPT can provide reasonably accurate and consistent nutritional information. Further research is recommended to assess the model's performance across a broader range of foods and meals.<END ABSTRACT></abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38194819</pmid><doi>10.1016/j.nut.2023.112325</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5772-2045</orcidid><orcidid>https://orcid.org/0000-0003-0392-0702</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9007 |
ispartof | Nutrition (Burbank, Los Angeles County, Calif.), 2024-03, Vol.119, p.112325-112325, Article 112325 |
issn | 0899-9007 1873-1244 |
language | eng |
recordid | cdi_proquest_miscellaneous_2913083885 |
source | ScienceDirect Freedom Collection |
subjects | Accuracy Agriculture Artificial intelligence Calories Carbohydrates Chatbots ChatGPT Chronic illnesses Coefficient of variation Diabetes Diet Dietary planning Energy Energy value False information Food Lipids Meals Nutrients Nutrition research Nutritional data Planning Proteins Public health Weight control Weight management |
title | AI dietician: Unveiling the accuracy of ChatGPT's nutritional estimations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20dietician:%20Unveiling%20the%20accuracy%20of%20ChatGPT's%20nutritional%20estimations&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Haman,%20Michael&rft.date=2024-03&rft.volume=119&rft.spage=112325&rft.epage=112325&rft.pages=112325-112325&rft.artnum=112325&rft.issn=0899-9007&rft.eissn=1873-1244&rft_id=info:doi/10.1016/j.nut.2023.112325&rft_dat=%3Cproquest_pubme%3E2923332263%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e221t-b435a5dee54cf44b565fc4cbec307cd1747632af4e71380aaac9447c3e4681e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923332263&rft_id=info:pmid/38194819&rfr_iscdi=true |