Loading…

Temperature-dependent charge carrier behavior in phosphorene quantum dots probed by terahertz time-domain spectroscopy

Although phosphorene quantum dots (PQDs) have gained significant attention in optoelectronics and physics due to their unique optical responses, the low-frequency electromagnetic properties of PQDs and the effects of temperature still remain largely unexplored. Herein, we investigate the temperature...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2024-01, Vol.49 (2), p.214-217
Main Authors: Ji, Pengcheng, Liu, Xuan, Hou, Lei, Ding, Lan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although phosphorene quantum dots (PQDs) have gained significant attention in optoelectronics and physics due to their unique optical responses, the low-frequency electromagnetic properties of PQDs and the effects of temperature still remain largely unexplored. Herein, we investigate the temperature-dependent terahertz (THz) response of PQDs by using THz time-domain spectroscopy. Effective THz conductivity of the PQD sample is extracted based on THz measurements to analyze the charge carrier behavior. It is shown that the carriers in the PQDs can be approximated as a weakly confined Drude gas of classical and noninteracting charge particles, which are described by the modified Drude-Smith formula. Then, we also obtain the temperature dependences of the effective characteristic parameters for the charge carriers. As the temperature increases, the plasma frequency linearly enhances whereas both of the carrier diffusion time and the momentum scattering time decrease, which are akin to conventional semiconductors to a large extent. In addition, the confinement factor is closed to 1 and nearly insensitive to temperature. These results are helpful to gain an in-depth understanding of the low-frequency electromagnetic response of charge carriers in PQDs and to explore new applications in photonics and optoelectronics.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.507725