Loading…

Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes

This study describes the fabrication of two types of multilayered coatings onto titanium by electrostatic self-assembly (ESA), using deoxyribosenucleic acid (DNA) as the anionic polyelectrolyte and poly- d-lysine (PDL) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Both coa...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2006-02, Vol.27 (5), p.691-701
Main Authors: van den Beucken, Jeroen J.J.P., Vos, Matthijn R.J., Thüne, Peter C., Hayakawa, Tohru, Fukushima, Tadao, Okahata, Yoshio, Walboomers, X. Frank, Sommerdijk, Nico A.J.M., Nolte, Roeland J.M., Jansen, John A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study describes the fabrication of two types of multilayered coatings onto titanium by electrostatic self-assembly (ESA), using deoxyribosenucleic acid (DNA) as the anionic polyelectrolyte and poly- d-lysine (PDL) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Both coatings were characterized using UV-vis spectrophotometry, atomic force microscopy (AFM), X-ray photospectroscopy (XPS), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and for the amount of DNA immobilized. The mutagenicity of the constituents of the coatings was assessed. Titanium substrates with or without multilayered DNA-coatings were used in cell culture experiments to study cell proliferation, viability, and morphology. Results of UV-vis spectrophotometry, AFM, and contact angle measurements clearly indicated the progressive build-up of the multilayered coatings. Furthermore, AFM and XPS data showed a more uniform build-up and morphology of [PDL/DNA]-coatings compared to [PAH/DNA]-coatings. DNA-immobilization into both coatings was linear, and approximated 3 μg/cm 2 into each double-layer. The surface morphology of both types of multilayered DNA-coatings showed elevations in the nanoscale range. No mutagenic effects of DNA, PDL, or PAH were detected, and cell viability and morphology were not affected by the presence of either type of multilayered DNA-coating. Still, the results of the proliferation assay revealed an increased proliferation of primary rat dermal fibroblasts on both types of multilayered DNA-coatings compared to non-coated controls. The biocompatibility and functionalization of the coatings produced here, will be assessed in subsequent cell culture and animal-implantation studies.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2005.06.015