Loading…

Heterogeneous Domain Decomposition for Computational Aeroacoustics

This paper presents a strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discr...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2006-10, Vol.44 (10), p.2231-2250
Main Authors: Utzmann, J, Schwartzkopff, T, Dumbser, M, Munz, C.-D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563
cites cdi_FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563
container_end_page 2250
container_issue 10
container_start_page 2231
container_title AIAA journal
container_volume 44
creator Utzmann, J
Schwartzkopff, T
Dumbser, M
Munz, C.-D
description This paper presents a strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives-finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.18144
format article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29133434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1200963601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563</originalsourceid><addsrcrecordid>eNptkFtLAzEQhYMoWFfxLyziBR-2ZjbZNH2srVqh4IuCb2E2m8iWbVOTXdB_b3qBQpF5GA58c85wCLkE2s8L4A_QBwmcH5EeFIxlTBafx6RHKYUMeJGfkrMQ5lHlAwk98jg1rfHuyyyN60I6cQusl-nEaLdYuVC3tVum1vl0HHXX4lpjk47iCep40NY6nJMTi00wF7udkI_np_fxNJu9vbyOR7MMOc_bTDAhpS6GprS2KmlZDSUKKjgM8gFWlag0HZRgNQhZAmWMAWoUZZ4PQXAsBEvI7dZ35d13Z0KrFnXQpmlw87uKIGM8TkKuDsC563z8OzKxk1wWkUzI3RbS3oXgjVUrXy_Q_yqgal2kArUpMpI3OzsMGhvrcanrsMclDGO0jNz9lsMacR-5s1GryirbNU1rftrIXv_LHkT_AVLQiyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215328591</pqid></control><display><type>article</type><title>Heterogeneous Domain Decomposition for Computational Aeroacoustics</title><source>Alma/SFX Local Collection</source><creator>Utzmann, J ; Schwartzkopff, T ; Dumbser, M ; Munz, C.-D</creator><creatorcontrib>Utzmann, J ; Schwartzkopff, T ; Dumbser, M ; Munz, C.-D</creatorcontrib><description>This paper presents a strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives-finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.18144</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Aeroacoustics, atmospheric sound ; Aerodynamics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Physics ; Simulation</subject><ispartof>AIAA journal, 2006-10, Vol.44 (10), p.2231-2250</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563</citedby><cites>FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18192918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Utzmann, J</creatorcontrib><creatorcontrib>Schwartzkopff, T</creatorcontrib><creatorcontrib>Dumbser, M</creatorcontrib><creatorcontrib>Munz, C.-D</creatorcontrib><title>Heterogeneous Domain Decomposition for Computational Aeroacoustics</title><title>AIAA journal</title><description>This paper presents a strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives-finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains. [PUBLICATION ABSTRACT]</description><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Aerodynamics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Physics</subject><subject>Simulation</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkFtLAzEQhYMoWFfxLyziBR-2ZjbZNH2srVqh4IuCb2E2m8iWbVOTXdB_b3qBQpF5GA58c85wCLkE2s8L4A_QBwmcH5EeFIxlTBafx6RHKYUMeJGfkrMQ5lHlAwk98jg1rfHuyyyN60I6cQusl-nEaLdYuVC3tVum1vl0HHXX4lpjk47iCep40NY6nJMTi00wF7udkI_np_fxNJu9vbyOR7MMOc_bTDAhpS6GprS2KmlZDSUKKjgM8gFWlag0HZRgNQhZAmWMAWoUZZ4PQXAsBEvI7dZ35d13Z0KrFnXQpmlw87uKIGM8TkKuDsC563z8OzKxk1wWkUzI3RbS3oXgjVUrXy_Q_yqgal2kArUpMpI3OzsMGhvrcanrsMclDGO0jNz9lsMacR-5s1GryirbNU1rftrIXv_LHkT_AVLQiyc</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Utzmann, J</creator><creator>Schwartzkopff, T</creator><creator>Dumbser, M</creator><creator>Munz, C.-D</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061001</creationdate><title>Heterogeneous Domain Decomposition for Computational Aeroacoustics</title><author>Utzmann, J ; Schwartzkopff, T ; Dumbser, M ; Munz, C.-D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Aerodynamics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Physics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utzmann, J</creatorcontrib><creatorcontrib>Schwartzkopff, T</creatorcontrib><creatorcontrib>Dumbser, M</creatorcontrib><creatorcontrib>Munz, C.-D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utzmann, J</au><au>Schwartzkopff, T</au><au>Dumbser, M</au><au>Munz, C.-D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Domain Decomposition for Computational Aeroacoustics</atitle><jtitle>AIAA journal</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>44</volume><issue>10</issue><spage>2231</spage><epage>2250</epage><pages>2231-2250</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>This paper presents a strategy to accelerate the direct simulation of aeroacoustic problems in terms of CPU time. The key idea is to introduce a heterogeneous domain decomposition. The whole computational domain is subdivided into smaller domains. In each of these subdomains the equations, the discretization, the mesh, and the time step may be different and are adapted to the local behavior of the solution. To reduce the total number of elements we propose the use of high order methods. Here the class of arbitrary high-order using derivatives-finite volume schemes on structured meshes and arbitrary high-order using derivatives discontinuous Galerkin methods on unstructured meshes seem a good choice to us. The coupling procedure is validated and numerical results for the interface transmission problem and the single airfoil gust response problem (from 4th Computational Aeroacoustics Workshop on Benchmark Problems, CP-2004 212954, NASA, 2004) are presented, together with the acoustic scattering problem at a cylinder and at multiple objects. The coupling approach proves to be especially efficient for the propagation of sound in large domains. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.18144</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2006-10, Vol.44 (10), p.2231-2250
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_29133434
source Alma/SFX Local Collection
subjects Acoustics
Aeroacoustics, atmospheric sound
Aerodynamics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Linear acoustics
Physics
Simulation
title Heterogeneous Domain Decomposition for Computational Aeroacoustics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Domain%20Decomposition%20for%20Computational%20Aeroacoustics&rft.jtitle=AIAA%20journal&rft.au=Utzmann,%20J&rft.date=2006-10-01&rft.volume=44&rft.issue=10&rft.spage=2231&rft.epage=2250&rft.pages=2231-2250&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.18144&rft_dat=%3Cproquest_aiaa_%3E1200963601%3C/proquest_aiaa_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a442t-63688c59ebffdb0bd98a60641727add6dc07b1fc168b103331aca6b229164a563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215328591&rft_id=info:pmid/&rfr_iscdi=true