Loading…
Achieving high-order fluctuation splitting schemes by extending the stencil
An extension to the fluctuation splitting approach for approximating hyperbolic conservation laws is described, which achieves higher than second-order accuracy in both space and time by extending the range of the distribution of the fluctuations. Initial results are presented for a simple linear sc...
Saved in:
Published in: | Computers & fluids 2005-05, Vol.34 (4), p.443-459 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An extension to the fluctuation splitting approach for approximating hyperbolic conservation laws is described, which achieves higher than second-order accuracy in both space and time by extending the range of the distribution of the fluctuations. Initial results are presented for a simple linear scheme which is third-order accurate in both space and time on uniform triangular grids. Numerically induced oscillations are suppressed by applying the flux-corrected transport algorithm. These schemes are evaluated in the context of existing fluctuation splitting approaches to modelling time-dependent flows and some suggestions for their future development are made. |
---|---|
ISSN: | 0045-7930 1879-0747 |
DOI: | 10.1016/j.compfluid.2003.09.008 |