Loading…
Combination of chemometric tools and image processing for bruise detection on apples
In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize...
Saved in:
Published in: | Computers and electronics in agriculture 2007-03, Vol.56 (1), p.1-13 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273 |
---|---|
cites | cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 1 |
container_title | Computers and electronics in agriculture |
container_volume | 56 |
creator | Xing, Juan Saeys, Wouter De Baerdemaeker, Josse |
description | In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000
nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared.
The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples. |
doi_str_mv | 10.1016/j.compag.2006.12.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29141163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169906001189</els_id><sourcerecordid>29141163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK6-gWAueus2lUkn6Ysgg7rCggd3z6EmXRkzdHfapEfw7c3QC972VBR8_0_Vx9hbEC0I0B_PrU_TgqdWCqFbkK0Q8hnbgTWyMSDMc7armG1A9_1L9qqUs6h7b82O3R_SdIwzrjHNPAXuf9GUJlpz9HxNaSwc54HHCU_El5w8lRLnEw8p82O-xEJ8oJX8Fp85LstI5TV7EXAs9OZx3rCHr1_uD7fN3Y9v3w-f7xqvOrM2ShmJAZTqvaFj0AG8Fb3WmvbYqUEP1lgfeoDQKRA2mECDRiM0EgYtzf6Gfdh662W_L1RWN8XiaRxxpnQpTvagAPS-gmoDfU6lZApuyfWn_NeBcFeF7uw2he6q0IF0VWGNvX_sx-JxDBlnH8v_rO2U6uBa_27jAiaHp1yZh59SwF4I00mrRCU-bQRVHX8iZVd8pNnTEHO154YUnz7lH4Xnktw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29141163</pqid></control><display><type>article</type><title>Combination of chemometric tools and image processing for bruise detection on apples</title><source>ScienceDirect Freedom Collection</source><creator>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</creator><creatorcontrib>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</creatorcontrib><description>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000
nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared.
The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2006.12.002</identifier><identifier>CODEN: CEAGE6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; apples ; automatic detection ; Biological and medical sciences ; bruising (plant) ; Food industries ; Fundamental and applied biological sciences. Psychology ; image analysis ; Image processing ; multispectral imagery ; Multispectral imaging ; PCA ; PLSDA</subject><ispartof>Computers and electronics in agriculture, 2007-03, Vol.56 (1), p.1-13</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</citedby><cites>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18544513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Juan</creatorcontrib><creatorcontrib>Saeys, Wouter</creatorcontrib><creatorcontrib>De Baerdemaeker, Josse</creatorcontrib><title>Combination of chemometric tools and image processing for bruise detection on apples</title><title>Computers and electronics in agriculture</title><description>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000
nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared.
The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</description><subject>Agronomy. Soil science and plant productions</subject><subject>apples</subject><subject>automatic detection</subject><subject>Biological and medical sciences</subject><subject>bruising (plant)</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>image analysis</subject><subject>Image processing</subject><subject>multispectral imagery</subject><subject>Multispectral imaging</subject><subject>PCA</subject><subject>PLSDA</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK6-gWAueus2lUkn6Ysgg7rCggd3z6EmXRkzdHfapEfw7c3QC972VBR8_0_Vx9hbEC0I0B_PrU_TgqdWCqFbkK0Q8hnbgTWyMSDMc7armG1A9_1L9qqUs6h7b82O3R_SdIwzrjHNPAXuf9GUJlpz9HxNaSwc54HHCU_El5w8lRLnEw8p82O-xEJ8oJX8Fp85LstI5TV7EXAs9OZx3rCHr1_uD7fN3Y9v3w-f7xqvOrM2ShmJAZTqvaFj0AG8Fb3WmvbYqUEP1lgfeoDQKRA2mECDRiM0EgYtzf6Gfdh662W_L1RWN8XiaRxxpnQpTvagAPS-gmoDfU6lZApuyfWn_NeBcFeF7uw2he6q0IF0VWGNvX_sx-JxDBlnH8v_rO2U6uBa_27jAiaHp1yZh59SwF4I00mrRCU-bQRVHX8iZVd8pNnTEHO154YUnz7lH4Xnktw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Xing, Juan</creator><creator>Saeys, Wouter</creator><creator>De Baerdemaeker, Josse</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070301</creationdate><title>Combination of chemometric tools and image processing for bruise detection on apples</title><author>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>apples</topic><topic>automatic detection</topic><topic>Biological and medical sciences</topic><topic>bruising (plant)</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>image analysis</topic><topic>Image processing</topic><topic>multispectral imagery</topic><topic>Multispectral imaging</topic><topic>PCA</topic><topic>PLSDA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Juan</creatorcontrib><creatorcontrib>Saeys, Wouter</creatorcontrib><creatorcontrib>De Baerdemaeker, Josse</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Juan</au><au>Saeys, Wouter</au><au>De Baerdemaeker, Josse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of chemometric tools and image processing for bruise detection on apples</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>56</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><coden>CEAGE6</coden><abstract>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000
nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared.
The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2006.12.002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1699 |
ispartof | Computers and electronics in agriculture, 2007-03, Vol.56 (1), p.1-13 |
issn | 0168-1699 1872-7107 |
language | eng |
recordid | cdi_proquest_miscellaneous_29141163 |
source | ScienceDirect Freedom Collection |
subjects | Agronomy. Soil science and plant productions apples automatic detection Biological and medical sciences bruising (plant) Food industries Fundamental and applied biological sciences. Psychology image analysis Image processing multispectral imagery Multispectral imaging PCA PLSDA |
title | Combination of chemometric tools and image processing for bruise detection on apples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20chemometric%20tools%20and%20image%20processing%20for%20bruise%20detection%20on%20apples&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Xing,%20Juan&rft.date=2007-03-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0168-1699&rft.eissn=1872-7107&rft.coden=CEAGE6&rft_id=info:doi/10.1016/j.compag.2006.12.002&rft_dat=%3Cproquest_cross%3E29141163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29141163&rft_id=info:pmid/&rfr_iscdi=true |