Loading…

Combination of chemometric tools and image processing for bruise detection on apples

In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2007-03, Vol.56 (1), p.1-13
Main Authors: Xing, Juan, Saeys, Wouter, De Baerdemaeker, Josse
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273
cites cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273
container_end_page 13
container_issue 1
container_start_page 1
container_title Computers and electronics in agriculture
container_volume 56
creator Xing, Juan
Saeys, Wouter
De Baerdemaeker, Josse
description In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared. The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.
doi_str_mv 10.1016/j.compag.2006.12.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29141163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169906001189</els_id><sourcerecordid>29141163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMoOK6-gWAueus2lUkn6Ysgg7rCggd3z6EmXRkzdHfapEfw7c3QC972VBR8_0_Vx9hbEC0I0B_PrU_TgqdWCqFbkK0Q8hnbgTWyMSDMc7armG1A9_1L9qqUs6h7b82O3R_SdIwzrjHNPAXuf9GUJlpz9HxNaSwc54HHCU_El5w8lRLnEw8p82O-xEJ8oJX8Fp85LstI5TV7EXAs9OZx3rCHr1_uD7fN3Y9v3w-f7xqvOrM2ShmJAZTqvaFj0AG8Fb3WmvbYqUEP1lgfeoDQKRA2mECDRiM0EgYtzf6Gfdh662W_L1RWN8XiaRxxpnQpTvagAPS-gmoDfU6lZApuyfWn_NeBcFeF7uw2he6q0IF0VWGNvX_sx-JxDBlnH8v_rO2U6uBa_27jAiaHp1yZh59SwF4I00mrRCU-bQRVHX8iZVd8pNnTEHO154YUnz7lH4Xnktw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29141163</pqid></control><display><type>article</type><title>Combination of chemometric tools and image processing for bruise detection on apples</title><source>ScienceDirect Freedom Collection</source><creator>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</creator><creatorcontrib>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</creatorcontrib><description>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared. The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2006.12.002</identifier><identifier>CODEN: CEAGE6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; apples ; automatic detection ; Biological and medical sciences ; bruising (plant) ; Food industries ; Fundamental and applied biological sciences. Psychology ; image analysis ; Image processing ; multispectral imagery ; Multispectral imaging ; PCA ; PLSDA</subject><ispartof>Computers and electronics in agriculture, 2007-03, Vol.56 (1), p.1-13</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</citedby><cites>FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18544513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Juan</creatorcontrib><creatorcontrib>Saeys, Wouter</creatorcontrib><creatorcontrib>De Baerdemaeker, Josse</creatorcontrib><title>Combination of chemometric tools and image processing for bruise detection on apples</title><title>Computers and electronics in agriculture</title><description>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared. The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</description><subject>Agronomy. Soil science and plant productions</subject><subject>apples</subject><subject>automatic detection</subject><subject>Biological and medical sciences</subject><subject>bruising (plant)</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>image analysis</subject><subject>Image processing</subject><subject>multispectral imagery</subject><subject>Multispectral imaging</subject><subject>PCA</subject><subject>PLSDA</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMoOK6-gWAueus2lUkn6Ysgg7rCggd3z6EmXRkzdHfapEfw7c3QC972VBR8_0_Vx9hbEC0I0B_PrU_TgqdWCqFbkK0Q8hnbgTWyMSDMc7armG1A9_1L9qqUs6h7b82O3R_SdIwzrjHNPAXuf9GUJlpz9HxNaSwc54HHCU_El5w8lRLnEw8p82O-xEJ8oJX8Fp85LstI5TV7EXAs9OZx3rCHr1_uD7fN3Y9v3w-f7xqvOrM2ShmJAZTqvaFj0AG8Fb3WmvbYqUEP1lgfeoDQKRA2mECDRiM0EgYtzf6Gfdh662W_L1RWN8XiaRxxpnQpTvagAPS-gmoDfU6lZApuyfWn_NeBcFeF7uw2he6q0IF0VWGNvX_sx-JxDBlnH8v_rO2U6uBa_27jAiaHp1yZh59SwF4I00mrRCU-bQRVHX8iZVd8pNnTEHO154YUnz7lH4Xnktw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Xing, Juan</creator><creator>Saeys, Wouter</creator><creator>De Baerdemaeker, Josse</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070301</creationdate><title>Combination of chemometric tools and image processing for bruise detection on apples</title><author>Xing, Juan ; Saeys, Wouter ; De Baerdemaeker, Josse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>apples</topic><topic>automatic detection</topic><topic>Biological and medical sciences</topic><topic>bruising (plant)</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>image analysis</topic><topic>Image processing</topic><topic>multispectral imagery</topic><topic>Multispectral imaging</topic><topic>PCA</topic><topic>PLSDA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Juan</creatorcontrib><creatorcontrib>Saeys, Wouter</creatorcontrib><creatorcontrib>De Baerdemaeker, Josse</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Juan</au><au>Saeys, Wouter</au><au>De Baerdemaeker, Josse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of chemometric tools and image processing for bruise detection on apples</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>56</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0168-1699</issn><eissn>1872-7107</eissn><coden>CEAGE6</coden><abstract>In this paper, an experiment of using a hyperspectral imaging system for bruise detection on ‘Golden Delicious’ apples is reported. The hyperspectral imaging system was built in the wavelength region between 400 and 1000 nm. Chemometric tools such as PCA and PLSDA were used to extract and summarize the spectral information from the hyperspectral images. Image processing methods made it possible to segment the region-of-interest according to the spatial features. Classification algorithms based on PCA and PLSDA results were developed, respectively. Their performance with respect to the classification accuracy and feasibility to implement on-line sorting were compared. The chemometric tools are able to extract and summarize the pixel-based information, while the image processing methods provide region-based analysis to efficiently segment differences of the apple surface. This combination of image processing techniques and chemometric tools provides a very promising approach for studying the quality of apples.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2006.12.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2007-03, Vol.56 (1), p.1-13
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_miscellaneous_29141163
source ScienceDirect Freedom Collection
subjects Agronomy. Soil science and plant productions
apples
automatic detection
Biological and medical sciences
bruising (plant)
Food industries
Fundamental and applied biological sciences. Psychology
image analysis
Image processing
multispectral imagery
Multispectral imaging
PCA
PLSDA
title Combination of chemometric tools and image processing for bruise detection on apples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20chemometric%20tools%20and%20image%20processing%20for%20bruise%20detection%20on%20apples&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Xing,%20Juan&rft.date=2007-03-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0168-1699&rft.eissn=1872-7107&rft.coden=CEAGE6&rft_id=info:doi/10.1016/j.compag.2006.12.002&rft_dat=%3Cproquest_cross%3E29141163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-4472af1449c7ebf6f1c809666e3a54d6d878cf911f54108f7fed6a706aeaf6273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29141163&rft_id=info:pmid/&rfr_iscdi=true