Loading…

Lightweight, flame retardant Janus carboxymethyl cellulose aerogel with fire-warning properties for smart sensor

Lightweight, flame retardant biomass aerogels combining with multi-functionalities are promising for thermal insulation, noise absorption and smart sensors. However, high flammability hinders the application of these aerogels in extreme condition. Herein, lightweight, flame retardant aerogel with fi...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2024-03, Vol.328, p.121730-121730, Article 121730
Main Authors: Liu, Yide, Cheng, Fangfang, Li, Kai, Yao, Jiuyong, Li, Xiankai, Xia, Yanzhi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lightweight, flame retardant biomass aerogels combining with multi-functionalities are promising for thermal insulation, noise absorption and smart sensors. However, high flammability hinders the application of these aerogels in extreme condition. Herein, lightweight, flame retardant aerogel with fire-warning properties fabricated from resource-abundant graphite and green carboxymethyl cellulose (CMC) is reported. During sonicating expandable graphite (EG) in CMC solution, CMC not only fabricates the downsizing process via hydrogen bonding effect but also forms stable dispersions. Then biomass aerogel is fabricated by freeze-drying strategy and enhanced by metal ionic cross-linking method. This aerogel demonstrates Janus properties for electrical conductivity and thermal conductivity. Due to the synergistic flame retardant effect of graphite nanocomposite and metal ions with a barrier effect and catalytic carbonization capacity, the flame retardancy of these aerogels are enhanced with fire-warning properties. Furthermore, these aerogels are used for monitoring physical deformations as smart sensors, which provides inspiration and a sustainable solution for developing low-cost biomass aerogel with multifunction.
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.121730