Loading…

Can gamification reduce the burden of self-reporting in mHealth applications? A feasibility study using machine learning from smartwatch data to estimate cognitive load

The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a...

Full description

Saved in:
Bibliographic Details
Published in:AMIA ... Annual Symposium proceedings 2023, Vol.2023, p.389-396
Main Authors: Grzeszczyk, Michal K, Adamczyk, Paulina, Marek, Sylwia, Pręcikowski, Ryszard, Kuś, Maciej, Lelujko, M Patrycja, Blanco, Rosmary, Trzciński, Tomasz, Sitek, Arkadiusz, Malawski, Maciej, Lisowska, Aneta
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a system to assess cognitive load (CL) through the analysis of photoplethysmography (PPG) signals. The data from 11 participants is utilized to train a machine learning model to detect CL. Subsequently, we create two versions of surveys: a gamified and a traditional one. We estimate the CL experienced by other participants (13) while completing surveys. We find that CL detector performance can be enhanced via pre-training on stress detection tasks. For 10 out of 13 participants, a personalized CL detector can achieve an F1 score above 0.7. We find no difference between the gamified and non-gamified surveys in terms of CL but participants prefer the gamified version.
ISSN:1559-4076