Loading…

Computing consecutive-type reliabilities nonrecursively

The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on reliability 2003-09, Vol.52 (3), p.367-372
Main Author: Shmueli, G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 372
container_issue 3
container_start_page 367
container_title IEEE transactions on reliability
container_volume 52
creator Shmueli, G.
description The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.
doi_str_mv 10.1109/TR.2003.817846
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29142791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1248654</ieee_id><sourcerecordid>29142791</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133</originalsourceid><addsrcrecordid>eNqF0EtLw0AQAOBFFKzVqxcvxYN4SczMvo9SfEFBkHoOaTIrW9Ik7iZC_70L9eRBTzvLfMyLsUsocoDC3q3fciwKnhvQRqgjNgMpTQYa4ZjNigJMZiXaU3YW4zZ9hbBmxvSy3w3T6LuPRd13keoUf1E27gdaBGp9tfGtHz3FRdd3IaVDTPl2f85OXNVGuvh55-z98WG9fM5Wr08vy_tV5kEgZIAOFFhUSLLRUiGaplJYNdqRMjyRWmy0wAa1q7VzTc2d1hKo5qawwPmc3RzqDqH_nCiO5c7Hmtq26qifYok29dFJ_gsNgrXCJnj7JwSlAdPlUCZ6_Ytu-yl0ad_SGJGmFxYTujogT0TlEPyuCvsSUBglBf8G38h5Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884342492</pqid></control><display><type>article</type><title>Computing consecutive-type reliabilities nonrecursively</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shmueli, G.</creator><creatorcontrib>Shmueli, G.</creatorcontrib><description>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2003.817846</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Degradation ; Electric breakdown ; Embedded computing ; Information technology ; Mathematical analysis ; Mathematical models ; Polynomials ; Probability ; Recursive ; Reliability theory ; Roots</subject><ispartof>IEEE transactions on reliability, 2003-09, Vol.52 (3), p.367-372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1248654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shmueli, G.</creatorcontrib><title>Computing consecutive-type reliabilities nonrecursively</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</description><subject>Computation</subject><subject>Degradation</subject><subject>Electric breakdown</subject><subject>Embedded computing</subject><subject>Information technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Probability</subject><subject>Recursive</subject><subject>Reliability theory</subject><subject>Roots</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQAOBFFKzVqxcvxYN4SczMvo9SfEFBkHoOaTIrW9Ik7iZC_70L9eRBTzvLfMyLsUsocoDC3q3fciwKnhvQRqgjNgMpTQYa4ZjNigJMZiXaU3YW4zZ9hbBmxvSy3w3T6LuPRd13keoUf1E27gdaBGp9tfGtHz3FRdd3IaVDTPl2f85OXNVGuvh55-z98WG9fM5Wr08vy_tV5kEgZIAOFFhUSLLRUiGaplJYNdqRMjyRWmy0wAa1q7VzTc2d1hKo5qawwPmc3RzqDqH_nCiO5c7Hmtq26qifYok29dFJ_gsNgrXCJnj7JwSlAdPlUCZ6_Ytu-yl0ad_SGJGmFxYTujogT0TlEPyuCvsSUBglBf8G38h5Cw</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Shmueli, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope></search><sort><creationdate>20030901</creationdate><title>Computing consecutive-type reliabilities nonrecursively</title><author>Shmueli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computation</topic><topic>Degradation</topic><topic>Electric breakdown</topic><topic>Embedded computing</topic><topic>Information technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Probability</topic><topic>Recursive</topic><topic>Reliability theory</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shmueli, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shmueli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing consecutive-type reliabilities nonrecursively</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>52</volume><issue>3</issue><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2003.817846</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2003-09, Vol.52 (3), p.367-372
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_miscellaneous_29142791
source IEEE Electronic Library (IEL) Journals
subjects Computation
Degradation
Electric breakdown
Embedded computing
Information technology
Mathematical analysis
Mathematical models
Polynomials
Probability
Recursive
Reliability theory
Roots
title Computing consecutive-type reliabilities nonrecursively
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20consecutive-type%20reliabilities%20nonrecursively&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Shmueli,%20G.&rft.date=2003-09-01&rft.volume=52&rft.issue=3&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2003.817846&rft_dat=%3Cproquest_ieee_%3E29142791%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884342492&rft_id=info:pmid/&rft_ieee_id=1248654&rfr_iscdi=true