Loading…
Computing consecutive-type reliabilities nonrecursively
The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement,...
Saved in:
Published in: | IEEE transactions on reliability 2003-09, Vol.52 (3), p.367-372 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 372 |
container_issue | 3 |
container_start_page | 367 |
container_title | IEEE transactions on reliability |
container_volume | 52 |
creator | Shmueli, G. |
description | The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components. |
doi_str_mv | 10.1109/TR.2003.817846 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29142791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1248654</ieee_id><sourcerecordid>29142791</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133</originalsourceid><addsrcrecordid>eNqF0EtLw0AQAOBFFKzVqxcvxYN4SczMvo9SfEFBkHoOaTIrW9Ik7iZC_70L9eRBTzvLfMyLsUsocoDC3q3fciwKnhvQRqgjNgMpTQYa4ZjNigJMZiXaU3YW4zZ9hbBmxvSy3w3T6LuPRd13keoUf1E27gdaBGp9tfGtHz3FRdd3IaVDTPl2f85OXNVGuvh55-z98WG9fM5Wr08vy_tV5kEgZIAOFFhUSLLRUiGaplJYNdqRMjyRWmy0wAa1q7VzTc2d1hKo5qawwPmc3RzqDqH_nCiO5c7Hmtq26qifYok29dFJ_gsNgrXCJnj7JwSlAdPlUCZ6_Ytu-yl0ad_SGJGmFxYTujogT0TlEPyuCvsSUBglBf8G38h5Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884342492</pqid></control><display><type>article</type><title>Computing consecutive-type reliabilities nonrecursively</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shmueli, G.</creator><creatorcontrib>Shmueli, G.</creatorcontrib><description>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2003.817846</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Degradation ; Electric breakdown ; Embedded computing ; Information technology ; Mathematical analysis ; Mathematical models ; Polynomials ; Probability ; Recursive ; Reliability theory ; Roots</subject><ispartof>IEEE transactions on reliability, 2003-09, Vol.52 (3), p.367-372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1248654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shmueli, G.</creatorcontrib><title>Computing consecutive-type reliabilities nonrecursively</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</description><subject>Computation</subject><subject>Degradation</subject><subject>Electric breakdown</subject><subject>Embedded computing</subject><subject>Information technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Probability</subject><subject>Recursive</subject><subject>Reliability theory</subject><subject>Roots</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQAOBFFKzVqxcvxYN4SczMvo9SfEFBkHoOaTIrW9Ik7iZC_70L9eRBTzvLfMyLsUsocoDC3q3fciwKnhvQRqgjNgMpTQYa4ZjNigJMZiXaU3YW4zZ9hbBmxvSy3w3T6LuPRd13keoUf1E27gdaBGp9tfGtHz3FRdd3IaVDTPl2f85OXNVGuvh55-z98WG9fM5Wr08vy_tV5kEgZIAOFFhUSLLRUiGaplJYNdqRMjyRWmy0wAa1q7VzTc2d1hKo5qawwPmc3RzqDqH_nCiO5c7Hmtq26qifYok29dFJ_gsNgrXCJnj7JwSlAdPlUCZ6_Ytu-yl0ad_SGJGmFxYTujogT0TlEPyuCvsSUBglBf8G38h5Cw</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Shmueli, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope></search><sort><creationdate>20030901</creationdate><title>Computing consecutive-type reliabilities nonrecursively</title><author>Shmueli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computation</topic><topic>Degradation</topic><topic>Electric breakdown</topic><topic>Embedded computing</topic><topic>Information technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Probability</topic><topic>Recursive</topic><topic>Reliability theory</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shmueli, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shmueli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing consecutive-type reliabilities nonrecursively</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2003-09-01</date><risdate>2003</risdate><volume>52</volume><issue>3</issue><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>The reliability of consecutive-type systems has been approached from various angles. A new method is presented for deriving exact expressions for the generating functions and the reliabilities of various consecutive-type systems. This method, based on Feller's run theory, is easy to implement, and leads to both recursive and nonrecursive formulas for the reliability. The nonrecursive expression is especially advantageous for systems with numerous components. In comparison to the n (number of components) computations that the recursive formulas require, the nonrecursive formula only requires the computation of the roots of a polynomial of order k. The method is extended for computing generating functions and reliabilities of systems with multi-state components as well as systems with s-dependent components.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2003.817846</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2003-09, Vol.52 (3), p.367-372 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_miscellaneous_29142791 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computation Degradation Electric breakdown Embedded computing Information technology Mathematical analysis Mathematical models Polynomials Probability Recursive Reliability theory Roots |
title | Computing consecutive-type reliabilities nonrecursively |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20consecutive-type%20reliabilities%20nonrecursively&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Shmueli,%20G.&rft.date=2003-09-01&rft.volume=52&rft.issue=3&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2003.817846&rft_dat=%3Cproquest_ieee_%3E29142791%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1421-12f1619262e5d756228da62ad7fe683421c4b742d27fc7ffdc3f7751ec3809133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884342492&rft_id=info:pmid/&rft_ieee_id=1248654&rfr_iscdi=true |