Loading…
Cell structure damage contributes to antifungal activity of sodium propylparaben against Trichothecium roseum
Trichothecium roseum is a type of fungus that causes pink rot in muskmelon after the melons are harvested. Pink rot leads to severe decay during storage and causes the production of toxins that can be harmful to human health. Sodium propylparaben (SPP, IUPAC name: sodium; 4-propoxycarbonylphenolate)...
Saved in:
Published in: | Pesticide biochemistry and physiology 2024-01, Vol.198, p.105758-105758, Article 105758 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Trichothecium roseum is a type of fungus that causes pink rot in muskmelon after the melons are harvested. Pink rot leads to severe decay during storage and causes the production of toxins that can be harmful to human health. Sodium propylparaben (SPP, IUPAC name: sodium; 4-propoxycarbonylphenolate) is an antimicrobial preservative that can be used to treat the inedible parts of fruits in addition to food, medications, and packaging. In this study, the effectiveness of SPP in inhibiting T. roseum was tested, and the inhibition mechanism was investigated. The results show that SPP inhibited the growth and spore germination of T. roseum. The malondialdehyde (MDA) content, propidium iodide staining, alkaline phosphatase (AKP) activity, and calcofluor white (CFW) staining results show that SPP produced a disruption of the cell membrane and cell wall integrity of T. roseum. Scanning and transmission electron microscopy (SEM and TEM, respectively) results also indicate that SPP disrupted the cellular structure of T. roseum. Meanwhile, the large amounts of superoxide anion and hydrogen peroxide in T. roseum accumulated due to the effects of SPP on the activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and decreased catalase. In addition, SPP caused a significant reduction in the incidence rate and disease degree of muskmelon pink rot in vivo. In conclusion, SPP appears to be effective against T. roseum via disruption of the cell membrane and wall. SPP could be used to manage melon pink rot after fruit harvesting because of its disease inhibition effect in vivo. |
---|---|
ISSN: | 0048-3575 1095-9939 |
DOI: | 10.1016/j.pestbp.2023.105758 |