Loading…

Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current

Carbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rap...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-03, Vol.63 (10), p.e202318338-n/a
Main Authors: Wen, Ming, Sun, Nana, Jiao, Long, Zang, Shuang‐Quan, Jiang, Hai‐Long
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 10
container_start_page e202318338
container_title Angewandte Chemie International Edition
container_volume 63
creator Wen, Ming
Sun, Nana
Jiao, Long
Zang, Shuang‐Quan
Jiang, Hai‐Long
description Carbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based SACs within 3 min without inert gas protection. The obtained carbon‐based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single‐atom Ni implanted N‐doped carbon (Ni1−N−C) derived from a Ni‐doped metal–organic framework (Ni‐ZIF‐8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1−N−C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large‐scale synthesis of SACs as well as other carbon‐based materials for efficient catalysis. A general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based single‐atom catalysts within 3 min. Specifically, the optimized single‐atom Ni implanted N‐doped carbon materials (Ni1−N−C) based on a metal–organic framework precursor showcases a tremendous CO partial current density of 1.06 A cm−2 with a CO Faradaic efficiency up to 96 % in electrocatalytic CO2 reduction.
doi_str_mv 10.1002/anie.202318338
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2915988185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915988185</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2898-2f8f9a17c2c95a350d30163f26dd78ad8c914b8f3a6eaf8283318208c6a1b1cd3</originalsourceid><addsrcrecordid>eNpd0c1O3DAQB3ALFQGFXnusLPXCJWB7NsnkuI2WgrSwEtBz5LWd1iiJU9sB7Y1H6DP2SfAWugdO_pjfWNb8CfnM2RlnTJzLwZozwQRwBMA9csRzwTMoS_iQ9jOArMScH5KPITwkj8iKA3IIKIBVKI7I87VV3j3JR_P3-c88BBui0fRWjlbTu80Qf5l0RV1Lr1cXSXyTIZXv7PCz-9cQXU9vLK1llN0mRNo6T-uVoIvOqOidN3pS0bqBykjn_Wj8tmtpHk1H68l7M8QTst_KLphPb-sx-XGxuK8vs-Xq-1U9X2ajwAoz0WJbSV4qoapcQs40MF5AKwqtS5QaVcVna2xBFka2KNI0OAqGqpB8zZWGY3L6-u7o3e_JhNj0NijTdXIwbgqNqHheIXLME_36jj64yQ_pd0kBnyEI2Kovb2pa90Y3o7e99Jvm_2wTqF7Bk-3MZlfnrNkm12yTa3bJNfObq8XuBC8-rI_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931483235</pqid></control><display><type>article</type><title>Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current</title><source>Wiley</source><creator>Wen, Ming ; Sun, Nana ; Jiao, Long ; Zang, Shuang‐Quan ; Jiang, Hai‐Long</creator><creatorcontrib>Wen, Ming ; Sun, Nana ; Jiao, Long ; Zang, Shuang‐Quan ; Jiang, Hai‐Long</creatorcontrib><description>Carbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based SACs within 3 min without inert gas protection. The obtained carbon‐based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single‐atom Ni implanted N‐doped carbon (Ni1−N−C) derived from a Ni‐doped metal–organic framework (Ni‐ZIF‐8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1−N−C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large‐scale synthesis of SACs as well as other carbon‐based materials for efficient catalysis. A general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based single‐atom catalysts within 3 min. Specifically, the optimized single‐atom Ni implanted N‐doped carbon materials (Ni1−N−C) based on a metal–organic framework precursor showcases a tremendous CO partial current density of 1.06 A cm−2 with a CO Faradaic efficiency up to 96 % in electrocatalytic CO2 reduction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202318338</identifier><identifier>PMID: 38230982</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon dioxide ; Catalysis ; Catalysts ; CO2 reduction ; Electric heating ; electrocatalysis ; Electrowinning ; Mass transfer ; Metal-organic frameworks ; microwave ; Porosity ; Pyrolysis ; Rare gases ; Single-atom catalysts ; Synthesis</subject><ispartof>Angewandte Chemie International Edition, 2024-03, Vol.63 (10), p.e202318338-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2975-7977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38230982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Ming</creatorcontrib><creatorcontrib>Sun, Nana</creatorcontrib><creatorcontrib>Jiao, Long</creatorcontrib><creatorcontrib>Zang, Shuang‐Quan</creatorcontrib><creatorcontrib>Jiang, Hai‐Long</creatorcontrib><title>Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Carbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based SACs within 3 min without inert gas protection. The obtained carbon‐based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single‐atom Ni implanted N‐doped carbon (Ni1−N−C) derived from a Ni‐doped metal–organic framework (Ni‐ZIF‐8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1−N−C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large‐scale synthesis of SACs as well as other carbon‐based materials for efficient catalysis. A general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based single‐atom catalysts within 3 min. Specifically, the optimized single‐atom Ni implanted N‐doped carbon materials (Ni1−N−C) based on a metal–organic framework precursor showcases a tremendous CO partial current density of 1.06 A cm−2 with a CO Faradaic efficiency up to 96 % in electrocatalytic CO2 reduction.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CO2 reduction</subject><subject>Electric heating</subject><subject>electrocatalysis</subject><subject>Electrowinning</subject><subject>Mass transfer</subject><subject>Metal-organic frameworks</subject><subject>microwave</subject><subject>Porosity</subject><subject>Pyrolysis</subject><subject>Rare gases</subject><subject>Single-atom catalysts</subject><subject>Synthesis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c1O3DAQB3ALFQGFXnusLPXCJWB7NsnkuI2WgrSwEtBz5LWd1iiJU9sB7Y1H6DP2SfAWugdO_pjfWNb8CfnM2RlnTJzLwZozwQRwBMA9csRzwTMoS_iQ9jOArMScH5KPITwkj8iKA3IIKIBVKI7I87VV3j3JR_P3-c88BBui0fRWjlbTu80Qf5l0RV1Lr1cXSXyTIZXv7PCz-9cQXU9vLK1llN0mRNo6T-uVoIvOqOidN3pS0bqBykjn_Wj8tmtpHk1H68l7M8QTst_KLphPb-sx-XGxuK8vs-Xq-1U9X2ajwAoz0WJbSV4qoapcQs40MF5AKwqtS5QaVcVna2xBFka2KNI0OAqGqpB8zZWGY3L6-u7o3e_JhNj0NijTdXIwbgqNqHheIXLME_36jj64yQ_pd0kBnyEI2Kovb2pa90Y3o7e99Jvm_2wTqF7Bk-3MZlfnrNkm12yTa3bJNfObq8XuBC8-rI_r</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Wen, Ming</creator><creator>Sun, Nana</creator><creator>Jiao, Long</creator><creator>Zang, Shuang‐Quan</creator><creator>Jiang, Hai‐Long</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2975-7977</orcidid></search><sort><creationdate>20240304</creationdate><title>Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current</title><author>Wen, Ming ; Sun, Nana ; Jiao, Long ; Zang, Shuang‐Quan ; Jiang, Hai‐Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2898-2f8f9a17c2c95a350d30163f26dd78ad8c914b8f3a6eaf8283318208c6a1b1cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CO2 reduction</topic><topic>Electric heating</topic><topic>electrocatalysis</topic><topic>Electrowinning</topic><topic>Mass transfer</topic><topic>Metal-organic frameworks</topic><topic>microwave</topic><topic>Porosity</topic><topic>Pyrolysis</topic><topic>Rare gases</topic><topic>Single-atom catalysts</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Ming</creatorcontrib><creatorcontrib>Sun, Nana</creatorcontrib><creatorcontrib>Jiao, Long</creatorcontrib><creatorcontrib>Zang, Shuang‐Quan</creatorcontrib><creatorcontrib>Jiang, Hai‐Long</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Ming</au><au>Sun, Nana</au><au>Jiao, Long</au><au>Zang, Shuang‐Quan</au><au>Jiang, Hai‐Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-03-04</date><risdate>2024</risdate><volume>63</volume><issue>10</issue><spage>e202318338</spage><epage>n/a</epage><pages>e202318338-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Carbon‐based single‐atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon‐based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based SACs within 3 min without inert gas protection. The obtained carbon‐based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single‐atom Ni implanted N‐doped carbon (Ni1−N−C) derived from a Ni‐doped metal–organic framework (Ni‐ZIF‐8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1−N−C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large‐scale synthesis of SACs as well as other carbon‐based materials for efficient catalysis. A general and facile microwave‐assisted rapid pyrolysis method is developed to afford carbon‐based single‐atom catalysts within 3 min. Specifically, the optimized single‐atom Ni implanted N‐doped carbon materials (Ni1−N−C) based on a metal–organic framework precursor showcases a tremendous CO partial current density of 1.06 A cm−2 with a CO Faradaic efficiency up to 96 % in electrocatalytic CO2 reduction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38230982</pmid><doi>10.1002/anie.202318338</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2975-7977</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-03, Vol.63 (10), p.e202318338-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2915988185
source Wiley
subjects Carbon
Carbon dioxide
Catalysis
Catalysts
CO2 reduction
Electric heating
electrocatalysis
Electrowinning
Mass transfer
Metal-organic frameworks
microwave
Porosity
Pyrolysis
Rare gases
Single-atom catalysts
Synthesis
title Microwave‐Assisted Rapid Synthesis of MOF‐Based Single‐Atom Ni Catalyst for CO2 Electroreduction at Ampere‐Level Current
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%E2%80%90Assisted%20Rapid%20Synthesis%20of%20MOF%E2%80%90Based%20Single%E2%80%90Atom%20Ni%20Catalyst%20for%20CO2%20Electroreduction%20at%20Ampere%E2%80%90Level%20Current&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wen,%20Ming&rft.date=2024-03-04&rft.volume=63&rft.issue=10&rft.spage=e202318338&rft.epage=n/a&rft.pages=e202318338-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202318338&rft_dat=%3Cproquest_pubme%3E2915988185%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2898-2f8f9a17c2c95a350d30163f26dd78ad8c914b8f3a6eaf8283318208c6a1b1cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931483235&rft_id=info:pmid/38230982&rfr_iscdi=true