Loading…
A contribution of Molecular Dynamics simulation to sophisticated engineering of coating processes applied to PVD DC sputter deposition
Usually, the development of sputtered layer systems as well as their manufacturing are characterised by empirical methods. Therefore, a simulation tool based on Molecular Dynamics (MD) for sophisticated engineering of PVD sputter deposition was developed. With this tool it is possible to correlate c...
Saved in:
Published in: | Surface & coatings technology 2005-10, Vol.200 (1-4), p.872-875 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Usually, the development of sputtered layer systems as well as their manufacturing are characterised by empirical methods. Therefore, a simulation tool based on Molecular Dynamics (MD) for sophisticated engineering of PVD sputter deposition was developed. With this tool it is possible to correlate coating relevant process parameters to resulting coating properties. The existing MD had to be extended: mesoscopic boundary conditions for MD had to be developed in order to describe the substrate and a continuously differentiable atomistic observable for the local stress tensor consistent with thermodynamics had to be formulated. Input parameters for MD simulation are the substrate temperature and the in situ monitored data of the particle flow. Due to this approach more detailed information about the microscopic origin of stress formation and coating morphology is obtained. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2005.01.102 |