Loading…

Simultaneous Enhancement of the Mechanical Properties, Performance and Insensitivity of an Energetic Elastomeric Polyurethane Binder by Kinetically Grafting Reactive Spiranes

A series of robust energetic polyurethane binders was developed by in situ grafting reactive spiranes to achieve the migration-resistant processing aid and compensate for the energy output. The reactive grafting spiranes (RGSs), bearing two highly ring-strained spiranes, were synthesized sequentiall...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2023-11, Vol.15 (23), p.4564
Main Authors: Ma, Mingyang, Kwon, Younghwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of robust energetic polyurethane binders was developed by in situ grafting reactive spiranes to achieve the migration-resistant processing aid and compensate for the energy output. The reactive grafting spiranes (RGSs), bearing two highly ring-strained spiranes, were synthesized sequentially to provide a promising ring strain energy up to a maximum value of 290 kJ mol . The thermodynamic compatibility of the RGS with uncured glycidyl azido polymer (GAP) was studied quantitatively by analyzing the glass transition temperature of their blendings. The reactivity study of the catalyst-free click reaction with respect to spacer-dependent species was amplified by tracing the extent of the reaction and measuring the activation energy. The faster reactivity of propargyl species was evident from two experimental approaches, which were verified further by theoretical predictions. Interestingly, the energy gap difference in the frontier molecular orbitals agreed well with the difference in activation energy between the two types of spacer-dependent species. The mechanical and thermochemical enhancements of GAP-based polyurethane with RGS were basically gained from those highly ring-strained moieties.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15234564