Loading…
Iron–iron oxide core–shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation
Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of...
Saved in:
Published in: | Applied surface science 2005-07, Vol.247 (1), p.25-31 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iron-based core–shell nanostructures were synthesized by laser pyrolysis in a two-steps procedure. In a first step, using a cross-flow configuration, the laser radiation was heating a gas phase mixture containing iron pentacarbonyl (vapors) entrained by an ethylene flow, which plays also the role of an energy transfer agent. Secondly, a carefully controlled in situ passivation of the freshly formed pyrophoric iron nanoparticles created a protective iron oxide shell. The produced nanoparticles (22
nm size diameters) with core–shell features were analyzed by TEM, XRD, SAED and Raman spectroscopy. Majoritary iron and gamma iron oxide/magnetite and minoritary carbon phases were identified. In laser pyrolysis experiments in which the reaction temperature was increased, the catalyzed homogeneous nucleation and growth of carbon nanotubes in the gas phase was observed and is presented here for the first time. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2005.01.037 |