Loading…
Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function
Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for applic...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203 |
---|---|
cites | cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e35365 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 112 |
creator | Abe, Gabriela L. Sasaki, Jun‐Ichi Tsuboi, Ririko Kohno, Tomoki Kitagawa, Haruaki Imazato, Satoshi |
description | Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function. |
doi_str_mv | 10.1002/jbm.b.35365 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917554623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917554623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</originalsourceid><addsrcrecordid>eNp90ctvGyEQB2BUNWqep94rpF5SRbaX57LH2GqSRomSQ3JGwM7aWLtLCt5W_u-LH_Uhh5xA8PHTDIPQV1KMSVHQydJ2YztmgknxCZ0QIeiIV4p8PuxLdoxOU1pmLAvBvqBjpigvKVcnKDyHdn3ZGrfyDhvn64kzbzFsDkIPP7D1rVlDxB10Npoesll4-AMJ23yPI8yhh2hWPvR4tYhhmC-wwZuE0M-hxtbE6PP7ZujdBp2jo8a0CS726xl6vfn5MrsbPTzd_ppdP4wcF0qMOFUVIdIaCUIpB86JpmxKXjolaSF4Q3glDTRSyNoIZ1ijSE0oSFY5qGnBztDlLjeX8nuAtNKdTw7aNvcQhqRpRUohuKQs0-_v6DIMsc_VbRXhtKRlVlc75WJIKUKj36LvTFxrUujNHHSeg7Z6O4esv-0zB9tBfbD_Pz4DugN_fQvrj7L0_fRxukv9B4HQlEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917142727</pqid></control><display><type>article</type><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><source>Wiley</source><creator>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</creator><creatorcontrib>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</creatorcontrib><description>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35365</identifier><identifier>PMID: 38247248</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Alveolar bone ; Animal models ; Animals ; barrier membrane ; bilayer membrane ; Biocompatible Materials ; Biodegradability ; Biodegradation ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone Regeneration ; Calvaria ; Caproates ; Collagen (type I) ; Copolymers ; Defects ; Degradation ; Dogs ; Glycolic acid ; guided bone regeneration ; Lactic acid ; Lactic Acid - pharmacology ; Lactones ; Materials research ; Materials science ; Membranes ; polycaprolactone ; polylactic acid ; Polylactide-co-glycolide ; Polymers ; Rats ; Regeneration ; Regeneration (physiology) ; Surgical implants</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</citedby><cites>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</cites><orcidid>0000-0002-0330-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Gabriela L.</creatorcontrib><creatorcontrib>Sasaki, Jun‐Ichi</creatorcontrib><creatorcontrib>Tsuboi, Ririko</creatorcontrib><creatorcontrib>Kohno, Tomoki</creatorcontrib><creatorcontrib>Kitagawa, Haruaki</creatorcontrib><creatorcontrib>Imazato, Satoshi</creatorcontrib><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</description><subject>Alveolar bone</subject><subject>Animal models</subject><subject>Animals</subject><subject>barrier membrane</subject><subject>bilayer membrane</subject><subject>Biocompatible Materials</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Calvaria</subject><subject>Caproates</subject><subject>Collagen (type I)</subject><subject>Copolymers</subject><subject>Defects</subject><subject>Degradation</subject><subject>Dogs</subject><subject>Glycolic acid</subject><subject>guided bone regeneration</subject><subject>Lactic acid</subject><subject>Lactic Acid - pharmacology</subject><subject>Lactones</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Membranes</subject><subject>polycaprolactone</subject><subject>polylactic acid</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Surgical implants</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90ctvGyEQB2BUNWqep94rpF5SRbaX57LH2GqSRomSQ3JGwM7aWLtLCt5W_u-LH_Uhh5xA8PHTDIPQV1KMSVHQydJ2YztmgknxCZ0QIeiIV4p8PuxLdoxOU1pmLAvBvqBjpigvKVcnKDyHdn3ZGrfyDhvn64kzbzFsDkIPP7D1rVlDxB10Npoesll4-AMJ23yPI8yhh2hWPvR4tYhhmC-wwZuE0M-hxtbE6PP7ZujdBp2jo8a0CS726xl6vfn5MrsbPTzd_ppdP4wcF0qMOFUVIdIaCUIpB86JpmxKXjolaSF4Q3glDTRSyNoIZ1ijSE0oSFY5qGnBztDlLjeX8nuAtNKdTw7aNvcQhqRpRUohuKQs0-_v6DIMsc_VbRXhtKRlVlc75WJIKUKj36LvTFxrUujNHHSeg7Z6O4esv-0zB9tBfbD_Pz4DugN_fQvrj7L0_fRxukv9B4HQlEA</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Abe, Gabriela L.</creator><creator>Sasaki, Jun‐Ichi</creator><creator>Tsuboi, Ririko</creator><creator>Kohno, Tomoki</creator><creator>Kitagawa, Haruaki</creator><creator>Imazato, Satoshi</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0330-0397</orcidid></search><sort><creationdate>202401</creationdate><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><author>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alveolar bone</topic><topic>Animal models</topic><topic>Animals</topic><topic>barrier membrane</topic><topic>bilayer membrane</topic><topic>Biocompatible Materials</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Calvaria</topic><topic>Caproates</topic><topic>Collagen (type I)</topic><topic>Copolymers</topic><topic>Defects</topic><topic>Degradation</topic><topic>Dogs</topic><topic>Glycolic acid</topic><topic>guided bone regeneration</topic><topic>Lactic acid</topic><topic>Lactic Acid - pharmacology</topic><topic>Lactones</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Membranes</topic><topic>polycaprolactone</topic><topic>polylactic acid</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Gabriela L.</creatorcontrib><creatorcontrib>Sasaki, Jun‐Ichi</creatorcontrib><creatorcontrib>Tsuboi, Ririko</creatorcontrib><creatorcontrib>Kohno, Tomoki</creatorcontrib><creatorcontrib>Kitagawa, Haruaki</creatorcontrib><creatorcontrib>Imazato, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Gabriela L.</au><au>Sasaki, Jun‐Ichi</au><au>Tsuboi, Ririko</au><au>Kohno, Tomoki</au><au>Kitagawa, Haruaki</au><au>Imazato, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-01</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>e35365</spage><epage>n/a</epage><pages>e35365-n/a</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38247248</pmid><doi>10.1002/jbm.b.35365</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0330-0397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a |
issn | 1552-4973 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2917554623 |
source | Wiley |
subjects | Alveolar bone Animal models Animals barrier membrane bilayer membrane Biocompatible Materials Biodegradability Biodegradation Biomaterials Biomedical materials Bone biomaterials Bone growth Bone Regeneration Calvaria Caproates Collagen (type I) Copolymers Defects Degradation Dogs Glycolic acid guided bone regeneration Lactic acid Lactic Acid - pharmacology Lactones Materials research Materials science Membranes polycaprolactone polylactic acid Polylactide-co-glycolide Polymers Rats Regeneration Regeneration (physiology) Surgical implants |
title | Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid/caprolactone)%20bilayer%20membrane%20achieves%20bone%20regeneration%20through%20a%20prolonged%20barrier%20function&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Abe,%20Gabriela%20L.&rft.date=2024-01&rft.volume=112&rft.issue=1&rft.spage=e35365&rft.epage=n/a&rft.pages=e35365-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35365&rft_dat=%3Cproquest_cross%3E2917554623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917142727&rft_id=info:pmid/38247248&rfr_iscdi=true |