Loading…

Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function

Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for applic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a
Main Authors: Abe, Gabriela L., Sasaki, Jun‐Ichi, Tsuboi, Ririko, Kohno, Tomoki, Kitagawa, Haruaki, Imazato, Satoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203
cites cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203
container_end_page n/a
container_issue 1
container_start_page e35365
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 112
creator Abe, Gabriela L.
Sasaki, Jun‐Ichi
Tsuboi, Ririko
Kohno, Tomoki
Kitagawa, Haruaki
Imazato, Satoshi
description Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.
doi_str_mv 10.1002/jbm.b.35365
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2917554623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917554623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</originalsourceid><addsrcrecordid>eNp90ctvGyEQB2BUNWqep94rpF5SRbaX57LH2GqSRomSQ3JGwM7aWLtLCt5W_u-LH_Uhh5xA8PHTDIPQV1KMSVHQydJ2YztmgknxCZ0QIeiIV4p8PuxLdoxOU1pmLAvBvqBjpigvKVcnKDyHdn3ZGrfyDhvn64kzbzFsDkIPP7D1rVlDxB10Npoesll4-AMJ23yPI8yhh2hWPvR4tYhhmC-wwZuE0M-hxtbE6PP7ZujdBp2jo8a0CS726xl6vfn5MrsbPTzd_ppdP4wcF0qMOFUVIdIaCUIpB86JpmxKXjolaSF4Q3glDTRSyNoIZ1ijSE0oSFY5qGnBztDlLjeX8nuAtNKdTw7aNvcQhqRpRUohuKQs0-_v6DIMsc_VbRXhtKRlVlc75WJIKUKj36LvTFxrUujNHHSeg7Z6O4esv-0zB9tBfbD_Pz4DugN_fQvrj7L0_fRxukv9B4HQlEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917142727</pqid></control><display><type>article</type><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><source>Wiley</source><creator>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</creator><creatorcontrib>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</creatorcontrib><description>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.35365</identifier><identifier>PMID: 38247248</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alveolar bone ; Animal models ; Animals ; barrier membrane ; bilayer membrane ; Biocompatible Materials ; Biodegradability ; Biodegradation ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone Regeneration ; Calvaria ; Caproates ; Collagen (type I) ; Copolymers ; Defects ; Degradation ; Dogs ; Glycolic acid ; guided bone regeneration ; Lactic acid ; Lactic Acid - pharmacology ; Lactones ; Materials research ; Materials science ; Membranes ; polycaprolactone ; polylactic acid ; Polylactide-co-glycolide ; Polymers ; Rats ; Regeneration ; Regeneration (physiology) ; Surgical implants</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</citedby><cites>FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</cites><orcidid>0000-0002-0330-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Gabriela L.</creatorcontrib><creatorcontrib>Sasaki, Jun‐Ichi</creatorcontrib><creatorcontrib>Tsuboi, Ririko</creatorcontrib><creatorcontrib>Kohno, Tomoki</creatorcontrib><creatorcontrib>Kitagawa, Haruaki</creatorcontrib><creatorcontrib>Imazato, Satoshi</creatorcontrib><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</description><subject>Alveolar bone</subject><subject>Animal models</subject><subject>Animals</subject><subject>barrier membrane</subject><subject>bilayer membrane</subject><subject>Biocompatible Materials</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Calvaria</subject><subject>Caproates</subject><subject>Collagen (type I)</subject><subject>Copolymers</subject><subject>Defects</subject><subject>Degradation</subject><subject>Dogs</subject><subject>Glycolic acid</subject><subject>guided bone regeneration</subject><subject>Lactic acid</subject><subject>Lactic Acid - pharmacology</subject><subject>Lactones</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Membranes</subject><subject>polycaprolactone</subject><subject>polylactic acid</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Surgical implants</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90ctvGyEQB2BUNWqep94rpF5SRbaX57LH2GqSRomSQ3JGwM7aWLtLCt5W_u-LH_Uhh5xA8PHTDIPQV1KMSVHQydJ2YztmgknxCZ0QIeiIV4p8PuxLdoxOU1pmLAvBvqBjpigvKVcnKDyHdn3ZGrfyDhvn64kzbzFsDkIPP7D1rVlDxB10Npoesll4-AMJ23yPI8yhh2hWPvR4tYhhmC-wwZuE0M-hxtbE6PP7ZujdBp2jo8a0CS726xl6vfn5MrsbPTzd_ppdP4wcF0qMOFUVIdIaCUIpB86JpmxKXjolaSF4Q3glDTRSyNoIZ1ijSE0oSFY5qGnBztDlLjeX8nuAtNKdTw7aNvcQhqRpRUohuKQs0-_v6DIMsc_VbRXhtKRlVlc75WJIKUKj36LvTFxrUujNHHSeg7Z6O4esv-0zB9tBfbD_Pz4DugN_fQvrj7L0_fRxukv9B4HQlEA</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Abe, Gabriela L.</creator><creator>Sasaki, Jun‐Ichi</creator><creator>Tsuboi, Ririko</creator><creator>Kohno, Tomoki</creator><creator>Kitagawa, Haruaki</creator><creator>Imazato, Satoshi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0330-0397</orcidid></search><sort><creationdate>202401</creationdate><title>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</title><author>Abe, Gabriela L. ; Sasaki, Jun‐Ichi ; Tsuboi, Ririko ; Kohno, Tomoki ; Kitagawa, Haruaki ; Imazato, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alveolar bone</topic><topic>Animal models</topic><topic>Animals</topic><topic>barrier membrane</topic><topic>bilayer membrane</topic><topic>Biocompatible Materials</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Calvaria</topic><topic>Caproates</topic><topic>Collagen (type I)</topic><topic>Copolymers</topic><topic>Defects</topic><topic>Degradation</topic><topic>Dogs</topic><topic>Glycolic acid</topic><topic>guided bone regeneration</topic><topic>Lactic acid</topic><topic>Lactic Acid - pharmacology</topic><topic>Lactones</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Membranes</topic><topic>polycaprolactone</topic><topic>polylactic acid</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Gabriela L.</creatorcontrib><creatorcontrib>Sasaki, Jun‐Ichi</creatorcontrib><creatorcontrib>Tsuboi, Ririko</creatorcontrib><creatorcontrib>Kohno, Tomoki</creatorcontrib><creatorcontrib>Kitagawa, Haruaki</creatorcontrib><creatorcontrib>Imazato, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Gabriela L.</au><au>Sasaki, Jun‐Ichi</au><au>Tsuboi, Ririko</au><au>Kohno, Tomoki</au><au>Kitagawa, Haruaki</au><au>Imazato, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2024-01</date><risdate>2024</risdate><volume>112</volume><issue>1</issue><spage>e35365</spage><epage>n/a</epage><pages>e35365-n/a</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow‐degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow‐degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic‐co‐glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space‐making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL‐treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38247248</pmid><doi>10.1002/jbm.b.35365</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0330-0397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2024-01, Vol.112 (1), p.e35365-n/a
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2917554623
source Wiley
subjects Alveolar bone
Animal models
Animals
barrier membrane
bilayer membrane
Biocompatible Materials
Biodegradability
Biodegradation
Biomaterials
Biomedical materials
Bone biomaterials
Bone growth
Bone Regeneration
Calvaria
Caproates
Collagen (type I)
Copolymers
Defects
Degradation
Dogs
Glycolic acid
guided bone regeneration
Lactic acid
Lactic Acid - pharmacology
Lactones
Materials research
Materials science
Membranes
polycaprolactone
polylactic acid
Polylactide-co-glycolide
Polymers
Rats
Regeneration
Regeneration (physiology)
Surgical implants
title Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid/caprolactone)%20bilayer%20membrane%20achieves%20bone%20regeneration%20through%20a%20prolonged%20barrier%20function&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Abe,%20Gabriela%20L.&rft.date=2024-01&rft.volume=112&rft.issue=1&rft.spage=e35365&rft.epage=n/a&rft.pages=e35365-n/a&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.35365&rft_dat=%3Cproquest_cross%3E2917554623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4585-4289116ba6e588cecc5f7f747c862054f1496aef656da5ca3f81d12e639ced203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917142727&rft_id=info:pmid/38247248&rfr_iscdi=true