Loading…
Corin deficiency alleviates mucosal lesions in a mouse model of colitis induced by dextran sulfate sodium
High dietary salt consumption is a risk factor for inflammatory bowel disease (IBD). Corin is a protease that activates atrial natriuretic peptide (ANP), thereby regulating sodium homeostasis. Corin acts in multiple tissues, including the intestine. In mice, corin deficiency impairs intestinal sodiu...
Saved in:
Published in: | Life sciences (1973) 2024-02, Vol.339, p.122446-122446, Article 122446 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High dietary salt consumption is a risk factor for inflammatory bowel disease (IBD). Corin is a protease that activates atrial natriuretic peptide (ANP), thereby regulating sodium homeostasis. Corin acts in multiple tissues, including the intestine. In mice, corin deficiency impairs intestinal sodium excretion. This study aims to examine if reduced intestinal sodium excretion alters the pathophysiology of IBD.
Wild-type (WT), Corin knockout (KO), and Corin kidney conditional KO (kcKO) mice were tested in a colitis model induced by dextran sulfide sodium (DSS). Effects of ANP on DSS-induced colitis were tested in WT and Corin KO mice. Body weight changes in the mice were monitored. Necropsy, histological analysis, and immunostaining studies were conducted to examine colon length and mucosal lesions. Fecal sodium levels were measured. RT-PCR was done to analyze proinflammatory genes in colon samples.
DSS-treated Corin KO mice had an ameliorated colitis phenotype with less body weight loss, longer colon lengths, smaller mucosal lesions, lower disease scores, more preserved goblet cells, and suppressed proinflammatory genes in the colon. In longitudinal studies, the DSS-treated Corin KO mice had delayed onset of colon mucosal lesions. ANP administration lessened the colitis in WT, but not Corin KO, mice. Analyses of WT, Corin KO, and Corin kcKO mice indicated that fecal sodium excretion, controlled by intestinal corin, may regulate inflammatory responses in DSS-induced colitis in mice.
Our findings indicate a role of corin in intestinal pathophysiology, suggesting that reduced intestinal sodium level may offer protective benefits against IBD. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2024.122446 |