Loading…

The molecular mechanism of sepsis-induced diaphragm dysfunction

No effective drugs for the treatment of sepsis-induced diaphragm dysfunction are currently available. Therefore, it is particularly important to clarify the molecular regulatory mechanism of this condition and subsequently implement effective treatment and prevention of sepsis-induced diaphragm dysf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thoracic disease 2023-12, Vol.15 (12), p.6831-6847
Main Authors: Yuan, Xiaosa, Xue, Fangsu, Yu, Yunchi, Cao, Xiaowen, Han, Yimin, Wang, Fei, Zhong, Lou
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:No effective drugs for the treatment of sepsis-induced diaphragm dysfunction are currently available. Therefore, it is particularly important to clarify the molecular regulatory mechanism of this condition and subsequently implement effective treatment and prevention of sepsis-induced diaphragm dysfunction. A mouse model of diaphragm dysfunction was established via injection of lipopolysaccharide (LPS). An RNA-sequencing (RNA-seq) technique was used to detect the differentially expressed genes (DEGs) in the diaphragms of mice. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for functional analysis of DEGs. The protein-protein interaction network obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website was imported into Cytoscape, the key molecular regulatory network was constructed with CytoNCA, the ClueGo plugin was further used to analyze the core regulatory pathways of key molecular, and finally, the iRegulon plugin was used to the identify key transcription factors. The genes upregulated after LPS treatment were involved in biological processes and pathways related to immune response; the genes downregulated after LPS treatment were mainly correlated with the muscle contraction. The expressions of several inflammation-related genes were upregulated after LPS treatment, of which tumor necrosis factor ( ), interleukin ( ) , and assumed a core regulatory role in the network; meanwhile, the downregulated key genes included , , , and , among others. These key regulatory factors participated in the activation of Toll-like receptor (TLR) signaling pathway, nuclear factor (NF)-κB signaling pathway, and TNF signaling pathway as well as the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Finally, RelA, IRF1, and STAT3, were identified as the key regulators in the early stage of diaphragmatic inflammatory response. Sepsis-induced diaphragm dysfunction in mice is closely correlated with the activation of TLR signaling pathway, NF-κB signaling pathway, and TNF signaling pathway and the inhibition of oxidative phosphorylation pathway, cardiac muscle contraction pathway, and citrate cycle pathway. Our findings provide insight into the molecular mechanism of sepsis-induced diaphragm dysfunction in mice and provide a promising new strategy for targeted treatment of diaphragm dysfunction.
ISSN:2072-1439
2077-6624
DOI:10.21037/jtd-23-1680