Loading…

In-situ gel: A smart carrier for drug delivery

[Display omitted] In-situ gel technology is a promising drug delivery strategy that undergoes a 'sol to gel' transition upon administration, providing controlled and prolonged drug release. These gels are composed of cross-linked 3D networks of polymers, with hydrogels being a specific typ...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2024-03, Vol.652, p.123819-123819, Article 123819
Main Authors: Garg, Akash, Agrawal, Rutvi, Singh Chauhan, Chetan, Deshmukh, Rohitas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] In-situ gel technology is a promising drug delivery strategy that undergoes a 'sol to gel' transition upon administration, providing controlled and prolonged drug release. These gels are composed of cross-linked 3D networks of polymers, with hydrogels being a specific type of absorbing water while retaining their shape. Gelation can be triggered by various stimuli, such as temperature, pH, ions, and light. They offer several advantages like improved patient compliance, extended drug residence time, localized drug delivery, etc, but also have some disadvantages like drug degradation and limited mechanical strength. In-situ gel falls into three categories: temperature-sensitive, ion-sensitive, and pH-sensitive, but multi-responsive gels that respond to multiple stimuli have better drug release characteristics. The mechanism of in-situ gel formation involves physical and chemical mechanisms. There are various applications of in-situ gel, like ocular drug delivery, nose-to-brain delivery, etc. In this review, we have discussed the types, and mechanisms of in-situ gel & use of in-situ gel in the treatment of different diseases through various routes like buccal, vaginal, ocular, nasal, etc., along with its use in targeted drug delivery.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2024.123819