Loading…
Microwave-assisted ZnO-decorated carbon urchin resembling 'shish-kebab' morphology with self-healing and enhanced electromagnetic shielding properties
Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was t...
Saved in:
Published in: | Nanoscale 2024-02, Vol.16 (7), p.351-3524 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, inspired by
Acacia auriculiformis
fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was then dispersed in a designer polyetherimide (PEI) matrix containing dynamic covalent bonds that can undergo metathesis, triggered by temperature, to harness self-healing properties in the composite. Such key attributes are required for their potential use in EMI shielding applications where frequent repairs are indispensable. Morphological investigation revealed that the ZnO flower was periodically nucleated like 'shish-kebab' structures on CU surfaces. CU was designed from short carbon fibers using a facile modified method. The EMI shielding performance of the resulting composites was investigated in the X-band, illustrating a shielding effectiveness of −40.6 dB for 2 wt% of ZnO@CU loading, and the composite can be preserved after the self-healing procedure. The ZnO 'kebabs' on 'CU shish' facilitated multiple scattering and numerous polarization centers to improve the EMI shielding performances at extremely low filler contents. In addition, the mechanical and thermal properties of the composite showed improved structural integrity and superior resistance to extreme temperatures, respectively. Overall, the proposed ZnO@CU/PEI composite has great potential to fulfill the increasing demands for lightweight EMI shielding materials in many fields.
Herein, inspired by
Acacia auriculiformis
fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d3nr05758e |