Loading…

Interactions of particulate- and dissolved-phase heavy metals in a mature stormwater bioretention cell

Bioretention is an increasingly common stormwater control measure (SCM) for mitigation of stormwater quantity and quality. Studies from lab to field scale have shown successful removal of total metals from stormwater, especially Cu and Zn which are ubiquitous in the urban environment yet detrimental...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental management 2024-02, Vol.352, p.120014-120014, Article 120014
Main Authors: Croft, Kristen, Kjellerup, Birthe V., Davis, Allen P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bioretention is an increasingly common stormwater control measure (SCM) for mitigation of stormwater quantity and quality. Studies from lab to field scale have shown successful removal of total metals from stormwater, especially Cu and Zn which are ubiquitous in the urban environment yet detrimental to aquatic ecosystems. While bioretention effectively removes particulate matter and particulate bound (PB) contaminants, removal performance of dissolved metals has been neglected in field studies. After approximately two decades of these systems being implemented, with a typical design-life of 20 years, performance of mature systems is unknown. This study examined the performance of a 16- to 18-year-old bioretention cell by characterizing Cu and Zn partitioning and removal. Flow-weighted composite samples of stormwater and bioretention effluent were collected and analyzed for total and dissolved metals. Size-fractioned road-deposited sediments (RDS) were collected and analyzed for metals and particle size distribution. The comparison of RDS and PB metals showed that PB-Zn was enriched in stormwater, indicating higher mobility of PB-Zn compared to PB-Cu. The mature bioretention system effectively removed particulates and PB-metals with average load reductions of 82% and 83%, respectively. While concentrations for dissolved metals were low (
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.120014