Loading…

Unraveling the rhizobial infection thread

Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2024-04, Vol.75 (8), p.2235-2245
Main Authors: Gao, Jin-Peng, Liang, Wenjie, Liu, Cheng-Wu, Xie, Fang, Murray, Jeremy D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most legumes can form an endosymbiotic association with soil bacteria called rhizobia, which colonize specialized root structures called nodules where they fix nitrogen. To colonize nodule cells, rhizobia must first traverse the epidermis and outer cortical cell layers of the root. In most legumes, this involves formation of the infection thread, an intracellular structure that becomes colonized by rhizobia, guiding their passage through the outer cell layers of the root and into the newly formed nodule cells. In this brief review, we recount the early research milestones relating to the rhizobial infection thread and highlight two relatively recent advances in the symbiotic infection mechanism, the eukaryotically conserved 'MYB-AUR1-MAP' mitotic module, which links cytokinesis mechanisms to intracellular infection, and the discovery of the 'infectosome' complex, which guides infection thread growth. We also discuss the potential intertwining of the two modules and the hypothesis that cytokinesis served as a foundation for intracellular infection of symbiotic microbes.
ISSN:0022-0957
1460-2431
1460-2431
DOI:10.1093/jxb/erae017