Loading…

High Energy Density Large Particle LiFePO4

To improve the energy density of LiFePO4 (LFP) cathode materials for Li-ion cells, we have utilized a modified mechanofusion method for preparing micrometer-sized LFP/C composite flake particles. The resulting flake particle morphology resulted in improved packing efficiency, enabling an electrode p...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2024-01, Vol.36 (2), p.803-814
Main Authors: Syed, Moarij A., Salehabadi, M., Obrovac, M. N.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 814
container_issue 2
container_start_page 803
container_title Chemistry of materials
container_volume 36
creator Syed, Moarij A.
Salehabadi, M.
Obrovac, M. N.
description To improve the energy density of LiFePO4 (LFP) cathode materials for Li-ion cells, we have utilized a modified mechanofusion method for preparing micrometer-sized LFP/C composite flake particles. The resulting flake particle morphology resulted in improved packing efficiency, enabling an electrode porosity of 14% to be achieved at high loadings, which represents a volumetric energy density increase of 28% compared to conventional LFP. Furthermore, LFP/C flake composites electrodes were found to have a higher coulombic efficiency, a reduced voltage–polarization, and a greatly reduced charge transfer resistance compared to conventional LFP electrodes. This is believed to be due to the low surface area of the LFP/C flake composite particles coupled to fast Li+ ion grain boundary diffusion. The ability to make highly dense LFP and low surface area electrodes could have profound impacts, allowing for Li-ion cells to be made with low cost and low environmental impact LFP, while high achieving volumetric energy densities and high coulombic efficiencies.
doi_str_mv 10.1021/acs.chemmater.3c02301
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2919742527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919742527</sourcerecordid><originalsourceid>FETCH-LOGICAL-a230t-748b45bdfb8bf0a48cf78dbb0a1b571da1c1bce4c61ea0be8af3728e6f628f8c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFZ_gpCjCKkzm012c5TaDyHQHvS87G5n25Q00Wxy6L83pcXTwPC87wwPY88IUwSOb8aFqdvT8Wh66qapA54C3rAIMw5JBsBvWQSqkImQWX7PHkI4AOAYVRF7XVW7fTxvqNud4g9qQtWf4tJ0O4o3pusrV1NcVgvarMUju_OmDvR0nRP2vZh_zVZJuV5-zt7LxIx3-0QKZUVmt94q68EI5bxUW2vBoM0kbg06tI6Ey5EMWFLGp5Iryn3OlVcunbCXS-9P1_4OFHp9rIKjujYNtUPQvMBCCp5xOaJ4QUcF-tAOXTM-phH02Ys-L_-96KuX9A95vFk2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919742527</pqid></control><display><type>article</type><title>High Energy Density Large Particle LiFePO4</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Syed, Moarij A. ; Salehabadi, M. ; Obrovac, M. N.</creator><creatorcontrib>Syed, Moarij A. ; Salehabadi, M. ; Obrovac, M. N.</creatorcontrib><description>To improve the energy density of LiFePO4 (LFP) cathode materials for Li-ion cells, we have utilized a modified mechanofusion method for preparing micrometer-sized LFP/C composite flake particles. The resulting flake particle morphology resulted in improved packing efficiency, enabling an electrode porosity of 14% to be achieved at high loadings, which represents a volumetric energy density increase of 28% compared to conventional LFP. Furthermore, LFP/C flake composites electrodes were found to have a higher coulombic efficiency, a reduced voltage–polarization, and a greatly reduced charge transfer resistance compared to conventional LFP electrodes. This is believed to be due to the low surface area of the LFP/C flake composite particles coupled to fast Li+ ion grain boundary diffusion. The ability to make highly dense LFP and low surface area electrodes could have profound impacts, allowing for Li-ion cells to be made with low cost and low environmental impact LFP, while high achieving volumetric energy densities and high coulombic efficiencies.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02301</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2024-01, Vol.36 (2), p.803-814</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5509-3185 ; 0009-0005-1404-8333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syed, Moarij A.</creatorcontrib><creatorcontrib>Salehabadi, M.</creatorcontrib><creatorcontrib>Obrovac, M. N.</creatorcontrib><title>High Energy Density Large Particle LiFePO4</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>To improve the energy density of LiFePO4 (LFP) cathode materials for Li-ion cells, we have utilized a modified mechanofusion method for preparing micrometer-sized LFP/C composite flake particles. The resulting flake particle morphology resulted in improved packing efficiency, enabling an electrode porosity of 14% to be achieved at high loadings, which represents a volumetric energy density increase of 28% compared to conventional LFP. Furthermore, LFP/C flake composites electrodes were found to have a higher coulombic efficiency, a reduced voltage–polarization, and a greatly reduced charge transfer resistance compared to conventional LFP electrodes. This is believed to be due to the low surface area of the LFP/C flake composite particles coupled to fast Li+ ion grain boundary diffusion. The ability to make highly dense LFP and low surface area electrodes could have profound impacts, allowing for Li-ion cells to be made with low cost and low environmental impact LFP, while high achieving volumetric energy densities and high coulombic efficiencies.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRMFZ_gpCjCKkzm012c5TaDyHQHvS87G5n25Q00Wxy6L83pcXTwPC87wwPY88IUwSOb8aFqdvT8Wh66qapA54C3rAIMw5JBsBvWQSqkImQWX7PHkI4AOAYVRF7XVW7fTxvqNud4g9qQtWf4tJ0O4o3pusrV1NcVgvarMUju_OmDvR0nRP2vZh_zVZJuV5-zt7LxIx3-0QKZUVmt94q68EI5bxUW2vBoM0kbg06tI6Ey5EMWFLGp5Iryn3OlVcunbCXS-9P1_4OFHp9rIKjujYNtUPQvMBCCp5xOaJ4QUcF-tAOXTM-phH02Ys-L_-96KuX9A95vFk2</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Syed, Moarij A.</creator><creator>Salehabadi, M.</creator><creator>Obrovac, M. N.</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5509-3185</orcidid><orcidid>https://orcid.org/0009-0005-1404-8333</orcidid></search><sort><creationdate>20240123</creationdate><title>High Energy Density Large Particle LiFePO4</title><author>Syed, Moarij A. ; Salehabadi, M. ; Obrovac, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a230t-748b45bdfb8bf0a48cf78dbb0a1b571da1c1bce4c61ea0be8af3728e6f628f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syed, Moarij A.</creatorcontrib><creatorcontrib>Salehabadi, M.</creatorcontrib><creatorcontrib>Obrovac, M. N.</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syed, Moarij A.</au><au>Salehabadi, M.</au><au>Obrovac, M. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Energy Density Large Particle LiFePO4</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>803</spage><epage>814</epage><pages>803-814</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>To improve the energy density of LiFePO4 (LFP) cathode materials for Li-ion cells, we have utilized a modified mechanofusion method for preparing micrometer-sized LFP/C composite flake particles. The resulting flake particle morphology resulted in improved packing efficiency, enabling an electrode porosity of 14% to be achieved at high loadings, which represents a volumetric energy density increase of 28% compared to conventional LFP. Furthermore, LFP/C flake composites electrodes were found to have a higher coulombic efficiency, a reduced voltage–polarization, and a greatly reduced charge transfer resistance compared to conventional LFP electrodes. This is believed to be due to the low surface area of the LFP/C flake composite particles coupled to fast Li+ ion grain boundary diffusion. The ability to make highly dense LFP and low surface area electrodes could have profound impacts, allowing for Li-ion cells to be made with low cost and low environmental impact LFP, while high achieving volumetric energy densities and high coulombic efficiencies.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c02301</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5509-3185</orcidid><orcidid>https://orcid.org/0009-0005-1404-8333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-01, Vol.36 (2), p.803-814
issn 0897-4756
1520-5002
language eng
recordid cdi_proquest_miscellaneous_2919742527
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title High Energy Density Large Particle LiFePO4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Energy%20Density%20Large%20Particle%20LiFePO4&rft.jtitle=Chemistry%20of%20materials&rft.au=Syed,%20Moarij%20A.&rft.date=2024-01-23&rft.volume=36&rft.issue=2&rft.spage=803&rft.epage=814&rft.pages=803-814&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02301&rft_dat=%3Cproquest_acs_j%3E2919742527%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a230t-748b45bdfb8bf0a48cf78dbb0a1b571da1c1bce4c61ea0be8af3728e6f628f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919742527&rft_id=info:pmid/&rfr_iscdi=true