Loading…

Improving acute stroke assessment in non-enhanced computed tomography: automated tool for early ischemic lesion volume detection

Background and objectives ASPECTs is a widely used marker to identify early stroke signs on non-enhanced computed tomography (NECT), yet it presents interindividual variability and it may be hard to use for non-experts. We introduce an algorithm capable of automatically estimating the NECT volumetri...

Full description

Saved in:
Bibliographic Details
Published in:Neurological sciences 2024-07, Vol.45 (7), p.3245-3253
Main Authors: Bernardi, Mara Sabina, Rodriguez, Alex, Caruso, Paola, Furlanis, Giovanni, Ridolfi, Mariana, Prandin, Gabriele, Naccarato, Marcello, Laio, Alessandro, Amati, Daniele, Manganotti, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background and objectives ASPECTs is a widely used marker to identify early stroke signs on non-enhanced computed tomography (NECT), yet it presents interindividual variability and it may be hard to use for non-experts. We introduce an algorithm capable of automatically estimating the NECT volumetric extension of early acute ischemic changes in the 3D space. We compared the power of this marker with ASPECTs evaluated by experienced practitioner in predicting the clinical outcome. Methods We analyzed and processed neuroimaging data of 153 patients admitted with acute ischemic stroke. All patients underwent a NECT at admission and on follow-up. The developed algorithm identifies the early ischemic hypodense region based on an automatic comparison of the gray level in the images of the two hemispheres, assumed to be an approximate mirror image of each other in healthy patients. Results In the two standard axial slices used to estimate the ASPECTs, the regions identified by the algorithm overlap significantly with those identified by experienced practitioners. However, in many patients, the regions identified automatically extend significantly to other slices. In these cases, the volume marker provides supplementary and independent information. Indeed, the clinical outcome of patients with volume marker = 0 can be distinguished with higher statistical confidence than the outcome of patients with ASPECTs = 10. Conclusion The volumetric extension and the location of acute ischemic region in the 3D-space, automatically identified by our algorithm, provide data that are mostly in agreement with the ASPECTs value estimated by expert practitioners, and in some cases complementary and independent.
ISSN:1590-1874
1590-3478
DOI:10.1007/s10072-024-07339-5