Loading…

Development of Enzyme-Based Approaches for Recycling PET on an Industrial Scale

Pollution by plastics such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polyamide (PA), polystyrene (PS), and poly­(ethylene terephthalate) (PET) is now gaining worldwide attention as a critical environmental issue, closely linked to climate change. Among t...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2024-01, Vol.63 (4), p.369-401
Main Authors: Oda, Kohei, Wlodawer, Alexander
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pollution by plastics such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polyamide (PA), polystyrene (PS), and poly­(ethylene terephthalate) (PET) is now gaining worldwide attention as a critical environmental issue, closely linked to climate change. Among them, PET is particularly prone to hydrolysis, breaking down into its constituents, ethylene glycol (EG) and terephthalate (TPA). Biorecycling or bioupcycling stands out as one of the most promising methods for addressing PET pollution. For dealing with pollution by the macrosize PET, a French company Carbios has developed a pilot-scale plant for biorecycling waste PET beverage bottles into new bottles using derivatives of thermophilic leaf compost cutinase (LCC). However, this system still provides significant challenges in its practical implementation. For the micro- or nanosize PET pollution that poses significant human health risks, including cancer, no industrial-scale approach has been established so far, despite the need to develop such technologies. In this Perspective, we explore the enhancement of the low activity and thermostability of the enzyme PETase to match that of LCC, along with the potential application of microbes and enzymes for the treatment of waste PET as microplastics. Additionally, we discuss the shortcomings of the current biorecycling protocols from a life cycle assessment perspective, covering aspects such as the diversity of PET-hydrolyzing enzymes in nature, the catalytic mechanism for crystallized PET, and more. We also provide an overview of the Ideonella sakaiensis system, highlighting its ability to operate and grow at moderate temperatures, in contrast to high-temperature processes.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.3c00554