Loading…
Artificial LiF‐Rich Interface Enabled by In situ Electrochemical Fluorination for Stable Lithium‐Metal Batteries
Lithium (Li)‐metal batteries are promising next‐generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrof...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-03, Vol.63 (12), p.e202319600-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lithium (Li)‐metal batteries are promising next‐generation energy storage systems. One drawback of uncontrollable electrolyte degradation is the ability to form a fragile and nonuniform solid electrolyte interface (SEI). In this study, we propose the use of a fluorinated carbon nanotube (CNT) macrofilm (CMF) on Li metal as a hybrid anode, which can regulate the redox state at the anode/electrolyte interface. Due to the favorable reaction energy between the plated Li and fluorinated CNTs, the metal can be fluorinated directly to a LiF‐rich SEI during the charging process, leading to a high Young's modulus (~2.0 GPa) and fast ionic transfer (~2.59×10−7 S cm−1). The obtained SEI can guide the homogeneous plating/stripping of Li during electrochemical processes while suppressing dendrite growth. In particular, the hybrid of endowed full cells with substantially enhanced cyclability allows for high capacity retention (~99.3 %) and remarkable rate capacity. This work can extend fluorination technology into a platform to control artificial SEI formation in Li‐metal batteries, increasing the stability and long‐term performance of the resulting material.
An artificial LiF‐rich solid electrolyte interface formed by a fluorinated carbon nanotube macrofilm endows stable Li‐metal batteries with long lifetimes. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202319600 |