Loading…
Bioinspired pullulan-starch nanoplatelets nanocomposite films with enhanced mechanical properties
Inspired by the leaf-vein network structure, the pullulan-starch nanoplatelets (SNPs) bioinspired films with enhanced strength and toughness were successfully fabricated through a water evaporation-induced self-assembly technique. SNPs (SNP200 and SNP600) of two sizes were separated by differential...
Saved in:
Published in: | Carbohydrate polymers 2024-04, Vol.329, p.121769-121769, Article 121769 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inspired by the leaf-vein network structure, the pullulan-starch nanoplatelets (SNPs) bioinspired films with enhanced strength and toughness were successfully fabricated through a water evaporation-induced self-assembly technique. SNPs (SNP200 and SNP600) of two sizes were separated by differential centrifugation. Interactions between SNPs and pullulan during drying resulted in the vein-like network structure in both nanocomposite films when the appropriate amounts of SNP200 or SNP600 were added to pullulan, respectively. The TS and toughness values of pullulan with 1 % w/w SNP200 films reached up to 51.05 MPa and 69.65 MJ·m
, which were 86 % and 223 % higher than those of the neat pullulan films, respectively. Moreover, the TS and toughness values of pullulan-SNP200 were significantly higher than those of pullulan-SNP600 films, when SNP content exceeded the 1 % w/w level. By applying a graph theory, the network structures were found to correlate with the mechanical properties of the pullulan-SNPs bioinspired films. The new strategy for designing starch nanoplatelets-based edible films that combine mechanical strength and toughness holds promises for the development of novel biobased composite materials for food packaging application. |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.121769 |