Loading…

The thermo-oxidative degradation of metallocene polyethylenes: Part 2: Thermal oxidation in the melt state

The thermo-oxidative melt degradation of different metallocene polyethylenes (mPEs) was investigated in a torque rheometer open to air at 225 °C and 10 rpm. The mPEs differed essentially according to their initial melt index, molar mass distribution, density and ash content, but one characteristic w...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2006-06, Vol.91 (6), p.1363-1372
Main Authors: Hoàng, Eric M., Allen, Norman S., Liauw, Christopher M., Fontán, Eusebio, Lafuente, Pilar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermo-oxidative melt degradation of different metallocene polyethylenes (mPEs) was investigated in a torque rheometer open to air at 225 °C and 10 rpm. The mPEs differed essentially according to their initial melt index, molar mass distribution, density and ash content, but one characteristic was changed at a time in order to assess the influence of each specific property in the thermo-oxidative degradation of the PEs investigated. Crosslinking was found to dominate at the early stages of degradation during mastication for most polymers where reactions of alkyl radicals to vinyl groups were considered to be the dominant reaction. Furthermore, discolouration was attributed to both excessive levels of catalyst residues and extensive formation of conjugated systems. Finally, it was concluded that the polymer melt viscosity, i.e., molar mass and shape of molar mass distribution, appeared to govern the processing stability of the mPE. These results confirm the importance of shear as the major source for initiation of free radicals formed by homolytic fission caused via mechanical cleavage of polymer chains.
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2005.07.018