Loading…
Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries
Aluminum−sulfur (Al−S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al−S batteries, especially at...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-03, Vol.63 (10), p.e202318204-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443 |
---|---|
cites | cdi_FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | e202318204 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Xu, Cheng Diemant, Thomas Mariani, Alessandro Di Pietro, Maria Enrica Mele, Andrea Liu, Xu Passerini, Stefano |
description | Aluminum−sulfur (Al−S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al−S batteries, especially at sub‐zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent are proposed for wide‐temperature‐range Al−S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al−S batteries. As a result, Al−S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from −20 to 40 °C. For instance, Al−S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g−1 after 300 cycles at 20 °C, while only 229 mAh g−1 is delivered with the dFBn‐free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide‐temperature Al−S batteries.
A locally concentrated ionic liquid electrolyte formed via diluting ionic liquid electrolytes with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent is proposed for wide‐temperature‐range Al−S batteries. It presents better fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, as well as a faster kinetics, enabling a long‐life‐span Al−S batteries under −20–40 °C. |
doi_str_mv | 10.1002/anie.202318204 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920571358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920571358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443</originalsourceid><addsrcrecordid>eNqF0U2LEzEYB_AgiruuXj3KgBcv082TlyY91lK1UFbYXfE4pJknkiUz6SYTpDc_gp_RT2JK1xW8eMoLv_wJz5-Q10BnQCm7NKPHGaOMg2ZUPCHnIBm0XCn-tO4F563SEs7Ii5zvqteazp-TM66ZEAzoOfHbaE0Ih2YVR4vjlMyEfbOJo7fN1t8X3zfrgHZKMRwmzI2Lqfnqe_z14-ctDnusvqTj6dqM37BZhjL4sQz14qYEV1Lz3kwTJo_5JXnmTMj46mG9IF8-rG9Xn9rt54-b1XLbWgFctFLuFHUolAZmkRtuwDkqda8EZeBgzgSAmiOi3IFRaKmBXiyoo0zyhRD8grw75e5TvC-Yp27w2WIIZsRYcscWjEoFXOpK3_5D72JJY_1dVRyErlPlVc1OyqaYc0LX7ZMfTDp0QLtjCd2xhO6xhPrgzUNs2Q3YP_I_U69gcQLffcDDf-K65dVm_Tf8NyhFlfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931483183</pqid></control><display><type>article</type><title>Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Xu, Cheng ; Diemant, Thomas ; Mariani, Alessandro ; Di Pietro, Maria Enrica ; Mele, Andrea ; Liu, Xu ; Passerini, Stefano</creator><creatorcontrib>Xu, Cheng ; Diemant, Thomas ; Mariani, Alessandro ; Di Pietro, Maria Enrica ; Mele, Andrea ; Liu, Xu ; Passerini, Stefano</creatorcontrib><description>Aluminum−sulfur (Al−S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al−S batteries, especially at sub‐zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent are proposed for wide‐temperature‐range Al−S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al−S batteries. As a result, Al−S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from −20 to 40 °C. For instance, Al−S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g−1 after 300 cycles at 20 °C, while only 229 mAh g−1 is delivered with the dFBn‐free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide‐temperature Al−S batteries.
A locally concentrated ionic liquid electrolyte formed via diluting ionic liquid electrolytes with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent is proposed for wide‐temperature‐range Al−S batteries. It presents better fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, as well as a faster kinetics, enabling a long‐life‐span Al−S batteries under −20–40 °C.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202318204</identifier><identifier>PMID: 38244210</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aluminum sulfur batteries ; Electrolytes ; Electrolytic cells ; Energy storage ; Fluidity ; Ion currents ; Ion transport ; ionic liquid electrolytes ; Ionic liquids ; Kinetics ; locally concentrated electrolytes ; non-solvating co-solvent ; Specific capacity ; Sulfur ; Temperature ; Viscosity ; wide temperature range</subject><ispartof>Angewandte Chemie International Edition, 2024-03, Vol.63 (10), p.e202318204-n/a</ispartof><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443</citedby><cites>FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443</cites><orcidid>0000-0002-5572-7691 ; 0000-0003-0532-316X ; 0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38244210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Mariani, Alessandro</creatorcontrib><creatorcontrib>Di Pietro, Maria Enrica</creatorcontrib><creatorcontrib>Mele, Andrea</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Aluminum−sulfur (Al−S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al−S batteries, especially at sub‐zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent are proposed for wide‐temperature‐range Al−S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al−S batteries. As a result, Al−S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from −20 to 40 °C. For instance, Al−S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g−1 after 300 cycles at 20 °C, while only 229 mAh g−1 is delivered with the dFBn‐free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide‐temperature Al−S batteries.
A locally concentrated ionic liquid electrolyte formed via diluting ionic liquid electrolytes with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent is proposed for wide‐temperature‐range Al−S batteries. It presents better fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, as well as a faster kinetics, enabling a long‐life‐span Al−S batteries under −20–40 °C.</description><subject>Aluminum</subject><subject>Aluminum sulfur batteries</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Fluidity</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>ionic liquid electrolytes</subject><subject>Ionic liquids</subject><subject>Kinetics</subject><subject>locally concentrated electrolytes</subject><subject>non-solvating co-solvent</subject><subject>Specific capacity</subject><subject>Sulfur</subject><subject>Temperature</subject><subject>Viscosity</subject><subject>wide temperature range</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqF0U2LEzEYB_AgiruuXj3KgBcv082TlyY91lK1UFbYXfE4pJknkiUz6SYTpDc_gp_RT2JK1xW8eMoLv_wJz5-Q10BnQCm7NKPHGaOMg2ZUPCHnIBm0XCn-tO4F563SEs7Ii5zvqteazp-TM66ZEAzoOfHbaE0Ih2YVR4vjlMyEfbOJo7fN1t8X3zfrgHZKMRwmzI2Lqfnqe_z14-ctDnusvqTj6dqM37BZhjL4sQz14qYEV1Lz3kwTJo_5JXnmTMj46mG9IF8-rG9Xn9rt54-b1XLbWgFctFLuFHUolAZmkRtuwDkqda8EZeBgzgSAmiOi3IFRaKmBXiyoo0zyhRD8grw75e5TvC-Yp27w2WIIZsRYcscWjEoFXOpK3_5D72JJY_1dVRyErlPlVc1OyqaYc0LX7ZMfTDp0QLtjCd2xhO6xhPrgzUNs2Q3YP_I_U69gcQLffcDDf-K65dVm_Tf8NyhFlfY</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Xu, Cheng</creator><creator>Diemant, Thomas</creator><creator>Mariani, Alessandro</creator><creator>Di Pietro, Maria Enrica</creator><creator>Mele, Andrea</creator><creator>Liu, Xu</creator><creator>Passerini, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5572-7691</orcidid><orcidid>https://orcid.org/0000-0003-0532-316X</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20240304</creationdate><title>Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries</title><author>Xu, Cheng ; Diemant, Thomas ; Mariani, Alessandro ; Di Pietro, Maria Enrica ; Mele, Andrea ; Liu, Xu ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Aluminum sulfur batteries</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Fluidity</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>ionic liquid electrolytes</topic><topic>Ionic liquids</topic><topic>Kinetics</topic><topic>locally concentrated electrolytes</topic><topic>non-solvating co-solvent</topic><topic>Specific capacity</topic><topic>Sulfur</topic><topic>Temperature</topic><topic>Viscosity</topic><topic>wide temperature range</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Diemant, Thomas</creatorcontrib><creatorcontrib>Mariani, Alessandro</creatorcontrib><creatorcontrib>Di Pietro, Maria Enrica</creatorcontrib><creatorcontrib>Mele, Andrea</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Cheng</au><au>Diemant, Thomas</au><au>Mariani, Alessandro</au><au>Di Pietro, Maria Enrica</au><au>Mele, Andrea</au><au>Liu, Xu</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-03-04</date><risdate>2024</risdate><volume>63</volume><issue>10</issue><spage>e202318204</spage><epage>n/a</epage><pages>e202318204-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Aluminum−sulfur (Al−S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al−S batteries, especially at sub‐zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent are proposed for wide‐temperature‐range Al−S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al−S batteries. As a result, Al−S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from −20 to 40 °C. For instance, Al−S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g−1 after 300 cycles at 20 °C, while only 229 mAh g−1 is delivered with the dFBn‐free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide‐temperature Al−S batteries.
A locally concentrated ionic liquid electrolyte formed via diluting ionic liquid electrolytes with non‐solvating 1,2‐difluorobenzene (dFBn) co‐solvent is proposed for wide‐temperature‐range Al−S batteries. It presents better fluidity and ionic conductivity without affecting the AlCl4−/Al2Cl7− equilibrium, as well as a faster kinetics, enabling a long‐life‐span Al−S batteries under −20–40 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38244210</pmid><doi>10.1002/anie.202318204</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5572-7691</orcidid><orcidid>https://orcid.org/0000-0003-0532-316X</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-03, Vol.63 (10), p.e202318204-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2920571358 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Aluminum sulfur batteries Electrolytes Electrolytic cells Energy storage Fluidity Ion currents Ion transport ionic liquid electrolytes Ionic liquids Kinetics locally concentrated electrolytes non-solvating co-solvent Specific capacity Sulfur Temperature Viscosity wide temperature range |
title | Locally Concentrated Ionic Liquid Electrolytes for Wide‐Temperature‐Range Aluminum‐Sulfur Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Concentrated%20Ionic%20Liquid%20Electrolytes%20for%20Wide%E2%80%90Temperature%E2%80%90Range%20Aluminum%E2%80%90Sulfur%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Cheng&rft.date=2024-03-04&rft.volume=63&rft.issue=10&rft.spage=e202318204&rft.epage=n/a&rft.pages=e202318204-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202318204&rft_dat=%3Cproquest_cross%3E2920571358%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4134-55b70fe47812ce3a3a1ff058d74021f16241176eee5b1a7ec0a1d490f02539443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931483183&rft_id=info:pmid/38244210&rfr_iscdi=true |