Loading…

Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging

BACKGROUND Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non‐destructive assessment of wheat components and the optimization of raw material proportions in liquor, this st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the science of food and agriculture 2024-05, Vol.104 (7), p.4145-4156
Main Authors: Huang, Yuexiang, Tian, Jianping, Yang, Haili, Hu, Xinjun, Han, Lipeng, Fei, Xue, He, Kangling, Liang, Yan, Xie, Liangliang, Huang, Dan, Zhang, HengJing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3166-a92f68a9107331a3d92cd579b2becdbff4c07f4b83741a786c4b9e3e9a3d75b63
container_end_page 4156
container_issue 7
container_start_page 4145
container_title Journal of the science of food and agriculture
container_volume 104
creator Huang, Yuexiang
Tian, Jianping
Yang, Haili
Hu, Xinjun
Han, Lipeng
Fei, Xue
He, Kangling
Liang, Yan
Xie, Liangliang
Huang, Dan
Zhang, HengJing
description BACKGROUND Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non‐destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full‐band spectral data and the characteristic wavelengths. The findings indicate that the MSC–competitive adaptive reweighted sampling–SEL model demonstrated the highest prediction accuracy, with Rp2 (test set‐determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg−1, respectively. CONCLUSION The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non‐destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.
doi_str_mv 10.1002/jsfa.13296
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920575373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035143416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3166-a92f68a9107331a3d92cd579b2becdbff4c07f4b83741a786c4b9e3e9a3d75b63</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS1URNLApg-ALHVTVZrgn_mJlwiaAkJiAawtj-c6cZiMB9ujkLevQ1IWLFhZ8vn8-doHoR-UTCkh7GIVjJpSzkR5hMaUiCojhJJvaJxClhU0ZyP0PYQVIUSIsjxBIz5jIueMjdHbNUTQ0boOO4M3S1ARB6X1UnlrrFbvSe824LHqGtx7F8F2WLsuQhfxEGy3wCEq_QINXrsG2oBtyhZexbSzsXGJl9sefOjTNV612K7VIh06RcdGtQHODusEPc__PF3dZPcPf2-vLu8zzWlZZkowU86UoKTinCreCKabohI1q0E3tTG5JpXJ6xmvcqqqWanzWgAHkdCqqEs-Qb_23jT66wAhyrUNGtpWdeCGIJlgpKgKnvQT9PMTunKD79J0khOe_pHndCf8vae0dyF4MLL36U1-KymRuz7krg_53keCzw_KoV5D84H-LyABdA9sbAvbL1Ty7nF-uZf-AyD4l4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035143416</pqid></control><display><type>article</type><title>Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Huang, Yuexiang ; Tian, Jianping ; Yang, Haili ; Hu, Xinjun ; Han, Lipeng ; Fei, Xue ; He, Kangling ; Liang, Yan ; Xie, Liangliang ; Huang, Dan ; Zhang, HengJing</creator><creatorcontrib>Huang, Yuexiang ; Tian, Jianping ; Yang, Haili ; Hu, Xinjun ; Han, Lipeng ; Fei, Xue ; He, Kangling ; Liang, Yan ; Xie, Liangliang ; Huang, Dan ; Zhang, HengJing</creatorcontrib><description>BACKGROUND Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non‐destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full‐band spectral data and the characteristic wavelengths. The findings indicate that the MSC–competitive adaptive reweighted sampling–SEL model demonstrated the highest prediction accuracy, with Rp2 (test set‐determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg−1, respectively. CONCLUSION The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non‐destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.13296</identifier><identifier>PMID: 38294322</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Adaptive sampling ; Algorithms ; Artificial neural networks ; Back propagation networks ; Ensemble learning ; Feature extraction ; Hyperspectral Imaging ; Least-Squares Analysis ; Liquor ; Machine learning ; Neural networks ; Neural Networks, Computer ; Nutrient content ; Prediction models ; Preprocessing ; protein content ; Proteins ; Raw materials ; Saccharification ; saccharification power ; stacked model ; Support Vector Machine ; Support vector machines ; Test sets ; Triticum ; Wavelengths ; Wheat</subject><ispartof>Journal of the science of food and agriculture, 2024-05, Vol.104 (7), p.4145-4156</ispartof><rights>2024 Society of Chemical Industry.</rights><rights>Copyright © 2024 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3166-a92f68a9107331a3d92cd579b2becdbff4c07f4b83741a786c4b9e3e9a3d75b63</cites><orcidid>0000-0003-4022-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38294322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yuexiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Yang, Haili</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Fei, Xue</creatorcontrib><creatorcontrib>He, Kangling</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Xie, Liangliang</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Zhang, HengJing</creatorcontrib><title>Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non‐destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full‐band spectral data and the characteristic wavelengths. The findings indicate that the MSC–competitive adaptive reweighted sampling–SEL model demonstrated the highest prediction accuracy, with Rp2 (test set‐determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg−1, respectively. CONCLUSION The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non‐destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.</description><subject>Accuracy</subject><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Ensemble learning</subject><subject>Feature extraction</subject><subject>Hyperspectral Imaging</subject><subject>Least-Squares Analysis</subject><subject>Liquor</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nutrient content</subject><subject>Prediction models</subject><subject>Preprocessing</subject><subject>protein content</subject><subject>Proteins</subject><subject>Raw materials</subject><subject>Saccharification</subject><subject>saccharification power</subject><subject>stacked model</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Test sets</subject><subject>Triticum</subject><subject>Wavelengths</subject><subject>Wheat</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEUhS1URNLApg-ALHVTVZrgn_mJlwiaAkJiAawtj-c6cZiMB9ujkLevQ1IWLFhZ8vn8-doHoR-UTCkh7GIVjJpSzkR5hMaUiCojhJJvaJxClhU0ZyP0PYQVIUSIsjxBIz5jIueMjdHbNUTQ0boOO4M3S1ARB6X1UnlrrFbvSe824LHqGtx7F8F2WLsuQhfxEGy3wCEq_QINXrsG2oBtyhZexbSzsXGJl9sefOjTNV612K7VIh06RcdGtQHODusEPc__PF3dZPcPf2-vLu8zzWlZZkowU86UoKTinCreCKabohI1q0E3tTG5JpXJ6xmvcqqqWanzWgAHkdCqqEs-Qb_23jT66wAhyrUNGtpWdeCGIJlgpKgKnvQT9PMTunKD79J0khOe_pHndCf8vae0dyF4MLL36U1-KymRuz7krg_53keCzw_KoV5D84H-LyABdA9sbAvbL1Ty7nF-uZf-AyD4l4s</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Huang, Yuexiang</creator><creator>Tian, Jianping</creator><creator>Yang, Haili</creator><creator>Hu, Xinjun</creator><creator>Han, Lipeng</creator><creator>Fei, Xue</creator><creator>He, Kangling</creator><creator>Liang, Yan</creator><creator>Xie, Liangliang</creator><creator>Huang, Dan</creator><creator>Zhang, HengJing</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4022-997X</orcidid></search><sort><creationdate>202405</creationdate><title>Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging</title><author>Huang, Yuexiang ; Tian, Jianping ; Yang, Haili ; Hu, Xinjun ; Han, Lipeng ; Fei, Xue ; He, Kangling ; Liang, Yan ; Xie, Liangliang ; Huang, Dan ; Zhang, HengJing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3166-a92f68a9107331a3d92cd579b2becdbff4c07f4b83741a786c4b9e3e9a3d75b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Ensemble learning</topic><topic>Feature extraction</topic><topic>Hyperspectral Imaging</topic><topic>Least-Squares Analysis</topic><topic>Liquor</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nutrient content</topic><topic>Prediction models</topic><topic>Preprocessing</topic><topic>protein content</topic><topic>Proteins</topic><topic>Raw materials</topic><topic>Saccharification</topic><topic>saccharification power</topic><topic>stacked model</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Test sets</topic><topic>Triticum</topic><topic>Wavelengths</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yuexiang</creatorcontrib><creatorcontrib>Tian, Jianping</creatorcontrib><creatorcontrib>Yang, Haili</creatorcontrib><creatorcontrib>Hu, Xinjun</creatorcontrib><creatorcontrib>Han, Lipeng</creatorcontrib><creatorcontrib>Fei, Xue</creatorcontrib><creatorcontrib>He, Kangling</creatorcontrib><creatorcontrib>Liang, Yan</creatorcontrib><creatorcontrib>Xie, Liangliang</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Zhang, HengJing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yuexiang</au><au>Tian, Jianping</au><au>Yang, Haili</au><au>Hu, Xinjun</au><au>Han, Lipeng</au><au>Fei, Xue</au><au>He, Kangling</au><au>Liang, Yan</au><au>Xie, Liangliang</au><au>Huang, Dan</au><au>Zhang, HengJing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2024-05</date><risdate>2024</risdate><volume>104</volume><issue>7</issue><spage>4145</spage><epage>4156</epage><pages>4145-4156</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non‐destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full‐band spectral data and the characteristic wavelengths. The findings indicate that the MSC–competitive adaptive reweighted sampling–SEL model demonstrated the highest prediction accuracy, with Rp2 (test set‐determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg−1, respectively. CONCLUSION The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non‐destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>38294322</pmid><doi>10.1002/jsfa.13296</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4022-997X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2024-05, Vol.104 (7), p.4145-4156
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2920575373
source Wiley-Blackwell Read & Publish Collection
subjects Accuracy
Adaptive sampling
Algorithms
Artificial neural networks
Back propagation networks
Ensemble learning
Feature extraction
Hyperspectral Imaging
Least-Squares Analysis
Liquor
Machine learning
Neural networks
Neural Networks, Computer
Nutrient content
Prediction models
Preprocessing
protein content
Proteins
Raw materials
Saccharification
saccharification power
stacked model
Support Vector Machine
Support vector machines
Test sets
Triticum
Wavelengths
Wheat
title Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20wheat%20saccharification%20power%20and%20protein%20content%20using%20stacked%20models%20integrated%20with%20hyperspectral%20imaging&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Huang,%20Yuexiang&rft.date=2024-05&rft.volume=104&rft.issue=7&rft.spage=4145&rft.epage=4156&rft.pages=4145-4156&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.13296&rft_dat=%3Cproquest_cross%3E3035143416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3166-a92f68a9107331a3d92cd579b2becdbff4c07f4b83741a786c4b9e3e9a3d75b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035143416&rft_id=info:pmid/38294322&rfr_iscdi=true