Loading…

Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods

Primal dual Interior Point Methods (IPMs) generate points that lie in the neighborhood of the central trajectory. The key ingredient of the primal dual IPMs is the parameterization of the central trajectory. A new approach to the parameterization of the central trajectory is presented. Instead of pa...

Full description

Saved in:
Bibliographic Details
Main Authors: Kasap, Suat, Trafalis, Theodore B
Format: Conference Proceeding
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 354
container_issue
container_start_page 347
container_title
container_volume 729
creator Kasap, Suat
Trafalis, Theodore B
description Primal dual Interior Point Methods (IPMs) generate points that lie in the neighborhood of the central trajectory. The key ingredient of the primal dual IPMs is the parameterization of the central trajectory. A new approach to the parameterization of the central trajectory is presented. Instead of parameterizing the central trajectory by the barrier parameter, it is parameterized by the time by describing a continuous dynamical system. Specifically, a new update rule based on the solution of an ordinary differential equation for the barrier parameter of the primal dual IPMs is presented. The resulting ordinary differential equation combined with the first order Karush-Kuhn-Tucker (KKT) conditions, which are algebraic equations, are called differential algebraic equations (DAEs). By solving DAEs, we find an optimal solution to the given problem.
doi_str_mv 10.1063/1.1814749
format conference_proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29205892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29205892</sourcerecordid><originalsourceid>FETCH-LOGICAL-p116t-b7e9e7c567892c1c388812d9127699ca3b503351ae35f45f2e8570fd0232623a3</originalsourceid><addsrcrecordid>eNotjLFOwzAURS0BEm1h4A88saXYz3Fsj1VbSqWiVgIktspxXsAoTVLbWfh6ImC5Z7hHh5A7zuacFeKBz7nmucrNBZkyJWTOgJn8kkzYiAxy8X5NpjF-MQZGKT0hLytf1xiwTd42dNF8YBmsd3R9HmzyXRupb-kh-NP4roZxtm3C4LtAD51vE933yZ_8969LnzF9dlW8IVe1bSLe_nNG3h7Xr8unbLffbJeLXdZzXqSsVGhQOVkobcBxJ7TWHCrDQRXGOCtKyYSQ3KKQdS5rQC0VqysGAgoQVszI_V-3D915wJiOJx8dNo1tsRviEQwwObbFDys-UbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29205892</pqid></control><display><type>conference_proceeding</type><title>Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kasap, Suat ; Trafalis, Theodore B</creator><creatorcontrib>Kasap, Suat ; Trafalis, Theodore B</creatorcontrib><description>Primal dual Interior Point Methods (IPMs) generate points that lie in the neighborhood of the central trajectory. The key ingredient of the primal dual IPMs is the parameterization of the central trajectory. A new approach to the parameterization of the central trajectory is presented. Instead of parameterizing the central trajectory by the barrier parameter, it is parameterized by the time by describing a continuous dynamical system. Specifically, a new update rule based on the solution of an ordinary differential equation for the barrier parameter of the primal dual IPMs is presented. The resulting ordinary differential equation combined with the first order Karush-Kuhn-Tucker (KKT) conditions, which are algebraic equations, are called differential algebraic equations (DAEs). By solving DAEs, we find an optimal solution to the given problem.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735402094</identifier><identifier>ISBN: 9780735402096</identifier><identifier>DOI: 10.1063/1.1814749</identifier><language>eng</language><ispartof>AIP conference proceedings, 2004, Vol.729, p.347-354</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kasap, Suat</creatorcontrib><creatorcontrib>Trafalis, Theodore B</creatorcontrib><title>Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods</title><title>AIP conference proceedings</title><description>Primal dual Interior Point Methods (IPMs) generate points that lie in the neighborhood of the central trajectory. The key ingredient of the primal dual IPMs is the parameterization of the central trajectory. A new approach to the parameterization of the central trajectory is presented. Instead of parameterizing the central trajectory by the barrier parameter, it is parameterized by the time by describing a continuous dynamical system. Specifically, a new update rule based on the solution of an ordinary differential equation for the barrier parameter of the primal dual IPMs is presented. The resulting ordinary differential equation combined with the first order Karush-Kuhn-Tucker (KKT) conditions, which are algebraic equations, are called differential algebraic equations (DAEs). By solving DAEs, we find an optimal solution to the given problem.</description><issn>0094-243X</issn><isbn>0735402094</isbn><isbn>9780735402096</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjLFOwzAURS0BEm1h4A88saXYz3Fsj1VbSqWiVgIktspxXsAoTVLbWfh6ImC5Z7hHh5A7zuacFeKBz7nmucrNBZkyJWTOgJn8kkzYiAxy8X5NpjF-MQZGKT0hLytf1xiwTd42dNF8YBmsd3R9HmzyXRupb-kh-NP4roZxtm3C4LtAD51vE933yZ_8969LnzF9dlW8IVe1bSLe_nNG3h7Xr8unbLffbJeLXdZzXqSsVGhQOVkobcBxJ7TWHCrDQRXGOCtKyYSQ3KKQdS5rQC0VqysGAgoQVszI_V-3D915wJiOJx8dNo1tsRviEQwwObbFDys-UbE</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Kasap, Suat</creator><creator>Trafalis, Theodore B</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040101</creationdate><title>Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods</title><author>Kasap, Suat ; Trafalis, Theodore B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p116t-b7e9e7c567892c1c388812d9127699ca3b503351ae35f45f2e8570fd0232623a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasap, Suat</creatorcontrib><creatorcontrib>Trafalis, Theodore B</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasap, Suat</au><au>Trafalis, Theodore B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods</atitle><btitle>AIP conference proceedings</btitle><date>2004-01-01</date><risdate>2004</risdate><volume>729</volume><spage>347</spage><epage>354</epage><pages>347-354</pages><issn>0094-243X</issn><isbn>0735402094</isbn><isbn>9780735402096</isbn><abstract>Primal dual Interior Point Methods (IPMs) generate points that lie in the neighborhood of the central trajectory. The key ingredient of the primal dual IPMs is the parameterization of the central trajectory. A new approach to the parameterization of the central trajectory is presented. Instead of parameterizing the central trajectory by the barrier parameter, it is parameterized by the time by describing a continuous dynamical system. Specifically, a new update rule based on the solution of an ordinary differential equation for the barrier parameter of the primal dual IPMs is presented. The resulting ordinary differential equation combined with the first order Karush-Kuhn-Tucker (KKT) conditions, which are algebraic equations, are called differential algebraic equations (DAEs). By solving DAEs, we find an optimal solution to the given problem.</abstract><doi>10.1063/1.1814749</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2004, Vol.729, p.347-354
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29205892
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Differential Algebraic Equations in Primal Dual Interior Point Optimization Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Differential%20Algebraic%20Equations%20in%20Primal%20Dual%20Interior%20Point%20Optimization%20Methods&rft.btitle=AIP%20conference%20proceedings&rft.au=Kasap,%20Suat&rft.date=2004-01-01&rft.volume=729&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.issn=0094-243X&rft.isbn=0735402094&rft.isbn_list=9780735402096&rft_id=info:doi/10.1063/1.1814749&rft_dat=%3Cproquest%3E29205892%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p116t-b7e9e7c567892c1c388812d9127699ca3b503351ae35f45f2e8570fd0232623a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29205892&rft_id=info:pmid/&rfr_iscdi=true