Loading…

Maximum likelihood for the fully observed contact process

The contact process—and more generally interacting particle systems—are useful and interesting models for a variety of statistical problems. This paper is concerned with maximum likelihood estimation of the parameters of the process for the case where the process is supercritical, starts with a sing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2006-02, Vol.186 (1), p.117-129
Main Authors: Fiocco, Marta, van Zwet, Willem R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53
cites cdi_FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53
container_end_page 129
container_issue 1
container_start_page 117
container_title Journal of computational and applied mathematics
container_volume 186
creator Fiocco, Marta
van Zwet, Willem R.
description The contact process—and more generally interacting particle systems—are useful and interesting models for a variety of statistical problems. This paper is concerned with maximum likelihood estimation of the parameters of the process for the case where the process is supercritical, starts with a single infected site at the origin and is observed during a long time interval [ 0 , t ] . We construct the estimators and prove their consistency and asymptotic normality as t → ∞ . We also discuss the relation with the estimation problem for the process observed at a single large time.
doi_str_mv 10.1016/j.cam.2005.01.037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29206350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705001925</els_id><sourcerecordid>29206350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gysSWc4zROxIQqvqQiFpgt53xWXZK62EkF_x5XZWY66fQ-7-kexq45FBx4fbspUA9FCbAogBcg5Amb8Ua2OZeyOWWztJE5VKU8ZxcxbgCgbnk1Y-2r_nbDNGS9-6Terb03mfUhG9eU2anvfzLfRQp7Mhn67ahxzHbBI8V4yc6s7iNd_c05-3h8eF8-56u3p5fl_SpHIfmYc7RV0xiBXSlbbIiXNTaaa9u1YIQ0FkBwqKyV2kq0ncYmBbBryWjB9ULM2c2xN939miiOanARqe_1lvwUVdmWUIsFpCA_BjH4GANZtQtu0OFHcVAHSWqjkiR1kKSAq6QkMXdHhtIHe0dBRXS0RTIuEI7KePcP_QsCxXBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29206350</pqid></control><display><type>article</type><title>Maximum likelihood for the fully observed contact process</title><source>ScienceDirect Journals</source><creator>Fiocco, Marta ; van Zwet, Willem R.</creator><creatorcontrib>Fiocco, Marta ; van Zwet, Willem R.</creatorcontrib><description>The contact process—and more generally interacting particle systems—are useful and interesting models for a variety of statistical problems. This paper is concerned with maximum likelihood estimation of the parameters of the process for the case where the process is supercritical, starts with a single infected site at the origin and is observed during a long time interval [ 0 , t ] . We construct the estimators and prove their consistency and asymptotic normality as t → ∞ . We also discuss the relation with the estimation problem for the process observed at a single large time.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2005.01.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Contact process ; Counting process ; Maximum likelihood ; Supercritical contact process</subject><ispartof>Journal of computational and applied mathematics, 2006-02, Vol.186 (1), p.117-129</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53</citedby><cites>FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Fiocco, Marta</creatorcontrib><creatorcontrib>van Zwet, Willem R.</creatorcontrib><title>Maximum likelihood for the fully observed contact process</title><title>Journal of computational and applied mathematics</title><description>The contact process—and more generally interacting particle systems—are useful and interesting models for a variety of statistical problems. This paper is concerned with maximum likelihood estimation of the parameters of the process for the case where the process is supercritical, starts with a single infected site at the origin and is observed during a long time interval [ 0 , t ] . We construct the estimators and prove their consistency and asymptotic normality as t → ∞ . We also discuss the relation with the estimation problem for the process observed at a single large time.</description><subject>Contact process</subject><subject>Counting process</subject><subject>Maximum likelihood</subject><subject>Supercritical contact process</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gysSWc4zROxIQqvqQiFpgt53xWXZK62EkF_x5XZWY66fQ-7-kexq45FBx4fbspUA9FCbAogBcg5Amb8Ua2OZeyOWWztJE5VKU8ZxcxbgCgbnk1Y-2r_nbDNGS9-6Terb03mfUhG9eU2anvfzLfRQp7Mhn67ahxzHbBI8V4yc6s7iNd_c05-3h8eF8-56u3p5fl_SpHIfmYc7RV0xiBXSlbbIiXNTaaa9u1YIQ0FkBwqKyV2kq0ncYmBbBryWjB9ULM2c2xN939miiOanARqe_1lvwUVdmWUIsFpCA_BjH4GANZtQtu0OFHcVAHSWqjkiR1kKSAq6QkMXdHhtIHe0dBRXS0RTIuEI7KePcP_QsCxXBo</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Fiocco, Marta</creator><creator>van Zwet, Willem R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Maximum likelihood for the fully observed contact process</title><author>Fiocco, Marta ; van Zwet, Willem R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Contact process</topic><topic>Counting process</topic><topic>Maximum likelihood</topic><topic>Supercritical contact process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiocco, Marta</creatorcontrib><creatorcontrib>van Zwet, Willem R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiocco, Marta</au><au>van Zwet, Willem R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum likelihood for the fully observed contact process</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>186</volume><issue>1</issue><spage>117</spage><epage>129</epage><pages>117-129</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The contact process—and more generally interacting particle systems—are useful and interesting models for a variety of statistical problems. This paper is concerned with maximum likelihood estimation of the parameters of the process for the case where the process is supercritical, starts with a single infected site at the origin and is observed during a long time interval [ 0 , t ] . We construct the estimators and prove their consistency and asymptotic normality as t → ∞ . We also discuss the relation with the estimation problem for the process observed at a single large time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2005.01.037</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2006-02, Vol.186 (1), p.117-129
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29206350
source ScienceDirect Journals
subjects Contact process
Counting process
Maximum likelihood
Supercritical contact process
title Maximum likelihood for the fully observed contact process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20likelihood%20for%20the%20fully%20observed%20contact%20process&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Fiocco,%20Marta&rft.date=2006-02-01&rft.volume=186&rft.issue=1&rft.spage=117&rft.epage=129&rft.pages=117-129&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2005.01.037&rft_dat=%3Cproquest_cross%3E29206350%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-1cf488d3cb279c8e126c8a1afb90d37df003104ff7af7cfbac86c8cb9eda31a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29206350&rft_id=info:pmid/&rfr_iscdi=true