Loading…

Bubble dynamics in microchannels. Part I: single microchannel

The present work explores experimentally bubble dynamics in a single trapezoid microchannel with a hydraulic diameter of 41.3 μm. The fabrication process of the microchannel employs a silicon bulk micromachining and anodic bounding process. Bubble nucleation, growth, departure size, and frequency ar...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2004-12, Vol.47 (25), p.5575-5589
Main Authors: Lee, P.C., Tseng, F.G., Pan, Chin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3
cites cdi_FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3
container_end_page 5589
container_issue 25
container_start_page 5575
container_title International journal of heat and mass transfer
container_volume 47
creator Lee, P.C.
Tseng, F.G.
Pan, Chin
description The present work explores experimentally bubble dynamics in a single trapezoid microchannel with a hydraulic diameter of 41.3 μm. The fabrication process of the microchannel employs a silicon bulk micromachining and anodic bounding process. Bubble nucleation, growth, departure size, and frequency are observed using a high speed digital camera and analyzed by the Image-Pro. The results of the study indicates that the bubble nucleation in the microchannel may be predicted from the classical model with microsized cavities and the bubble typically grows with a constant rate from 0.13 to 7.08 μm/ms. Some cases demonstrate an extraordinarily high growth rate from 72.8 to 95.2 μm/ms. The size of bubble departure from the microchannel wall is found to be governed by surface tension and drag of bulk flow and may be fairly correlated by a modified form of Levy equation. The bubble frequency in the microchannel is comparable to that in an ordinary sized channel. The traditional form of frequency–departure-diameter relationship seems to be inexistent in the microchannel of this study.
doi_str_mv 10.1016/j.ijheatmasstransfer.2004.02.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29217455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931004002844</els_id><sourcerecordid>29217455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oTeKN60nabumgqAOPxnohV6HfNWltNnM6YT9ezM2UPDGq0PIc97z8hByTiGjQCcXbebauZVDLxGHID02NmQMoMiAZZDTPTKivKpTRnm9T0YAtErrnMIhOUJsN08oJiNydbtSqrOJWXvZO42J80mcYaHn0nvbYZa8yjAkT5cJOv8Ryd-_x-SgkR3ak90ck_f7u7fpYzp7eXia3sxSXeR8SLWRORjZ0LrOa85ryxpQBc-1UrFRacAASKiKkmteNaY0eWkpNVIxVdCqUfmYnG1zl2HxubI4iN6htl0nvV2sULCa0bheRvB6C8aOiME2YhlcL8NaUBAbb6IVf72JjTcBTERvMeJ0d0uill0TGe3wJ2fCijI2jdzzlouS7JeLKaid9doaF6wehFm4_x_9BrOjj_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29217455</pqid></control><display><type>article</type><title>Bubble dynamics in microchannels. Part I: single microchannel</title><source>ScienceDirect Freedom Collection</source><creator>Lee, P.C. ; Tseng, F.G. ; Pan, Chin</creator><creatorcontrib>Lee, P.C. ; Tseng, F.G. ; Pan, Chin</creatorcontrib><description>The present work explores experimentally bubble dynamics in a single trapezoid microchannel with a hydraulic diameter of 41.3 μm. The fabrication process of the microchannel employs a silicon bulk micromachining and anodic bounding process. Bubble nucleation, growth, departure size, and frequency are observed using a high speed digital camera and analyzed by the Image-Pro. The results of the study indicates that the bubble nucleation in the microchannel may be predicted from the classical model with microsized cavities and the bubble typically grows with a constant rate from 0.13 to 7.08 μm/ms. Some cases demonstrate an extraordinarily high growth rate from 72.8 to 95.2 μm/ms. The size of bubble departure from the microchannel wall is found to be governed by surface tension and drag of bulk flow and may be fairly correlated by a modified form of Levy equation. The bubble frequency in the microchannel is comparable to that in an ordinary sized channel. The traditional form of frequency–departure-diameter relationship seems to be inexistent in the microchannel of this study.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2004.02.031</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling heat transfer ; Bubble dynamics ; Electronics ; Exact sciences and technology ; Micro- and nanoelectromechanical devices (mems/nems) ; Microchannel ; Onset nucleate boiling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>International journal of heat and mass transfer, 2004-12, Vol.47 (25), p.5575-5589</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3</citedby><cites>FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16245458$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, P.C.</creatorcontrib><creatorcontrib>Tseng, F.G.</creatorcontrib><creatorcontrib>Pan, Chin</creatorcontrib><title>Bubble dynamics in microchannels. Part I: single microchannel</title><title>International journal of heat and mass transfer</title><description>The present work explores experimentally bubble dynamics in a single trapezoid microchannel with a hydraulic diameter of 41.3 μm. The fabrication process of the microchannel employs a silicon bulk micromachining and anodic bounding process. Bubble nucleation, growth, departure size, and frequency are observed using a high speed digital camera and analyzed by the Image-Pro. The results of the study indicates that the bubble nucleation in the microchannel may be predicted from the classical model with microsized cavities and the bubble typically grows with a constant rate from 0.13 to 7.08 μm/ms. Some cases demonstrate an extraordinarily high growth rate from 72.8 to 95.2 μm/ms. The size of bubble departure from the microchannel wall is found to be governed by surface tension and drag of bulk flow and may be fairly correlated by a modified form of Levy equation. The bubble frequency in the microchannel is comparable to that in an ordinary sized channel. The traditional form of frequency–departure-diameter relationship seems to be inexistent in the microchannel of this study.</description><subject>Applied sciences</subject><subject>Boiling heat transfer</subject><subject>Bubble dynamics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microchannel</subject><subject>Onset nucleate boiling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKf_oTeKN60nabumgqAOPxnohV6HfNWltNnM6YT9ezM2UPDGq0PIc97z8hByTiGjQCcXbebauZVDLxGHID02NmQMoMiAZZDTPTKivKpTRnm9T0YAtErrnMIhOUJsN08oJiNydbtSqrOJWXvZO42J80mcYaHn0nvbYZa8yjAkT5cJOv8Ryd-_x-SgkR3ak90ck_f7u7fpYzp7eXia3sxSXeR8SLWRORjZ0LrOa85ryxpQBc-1UrFRacAASKiKkmteNaY0eWkpNVIxVdCqUfmYnG1zl2HxubI4iN6htl0nvV2sULCa0bheRvB6C8aOiME2YhlcL8NaUBAbb6IVf72JjTcBTERvMeJ0d0uill0TGe3wJ2fCijI2jdzzlouS7JeLKaid9doaF6wehFm4_x_9BrOjj_k</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Lee, P.C.</creator><creator>Tseng, F.G.</creator><creator>Pan, Chin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>Bubble dynamics in microchannels. Part I: single microchannel</title><author>Lee, P.C. ; Tseng, F.G. ; Pan, Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Boiling heat transfer</topic><topic>Bubble dynamics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microchannel</topic><topic>Onset nucleate boiling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, P.C.</creatorcontrib><creatorcontrib>Tseng, F.G.</creatorcontrib><creatorcontrib>Pan, Chin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, P.C.</au><au>Tseng, F.G.</au><au>Pan, Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble dynamics in microchannels. Part I: single microchannel</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>47</volume><issue>25</issue><spage>5575</spage><epage>5589</epage><pages>5575-5589</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The present work explores experimentally bubble dynamics in a single trapezoid microchannel with a hydraulic diameter of 41.3 μm. The fabrication process of the microchannel employs a silicon bulk micromachining and anodic bounding process. Bubble nucleation, growth, departure size, and frequency are observed using a high speed digital camera and analyzed by the Image-Pro. The results of the study indicates that the bubble nucleation in the microchannel may be predicted from the classical model with microsized cavities and the bubble typically grows with a constant rate from 0.13 to 7.08 μm/ms. Some cases demonstrate an extraordinarily high growth rate from 72.8 to 95.2 μm/ms. The size of bubble departure from the microchannel wall is found to be governed by surface tension and drag of bulk flow and may be fairly correlated by a modified form of Levy equation. The bubble frequency in the microchannel is comparable to that in an ordinary sized channel. The traditional form of frequency–departure-diameter relationship seems to be inexistent in the microchannel of this study.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2004.02.031</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2004-12, Vol.47 (25), p.5575-5589
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_29217455
source ScienceDirect Freedom Collection
subjects Applied sciences
Boiling heat transfer
Bubble dynamics
Electronics
Exact sciences and technology
Micro- and nanoelectromechanical devices (mems/nems)
Microchannel
Onset nucleate boiling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Bubble dynamics in microchannels. Part I: single microchannel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20dynamics%20in%20microchannels.%20Part%20I:%20single%20microchannel&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Lee,%20P.C.&rft.date=2004-12-01&rft.volume=47&rft.issue=25&rft.spage=5575&rft.epage=5589&rft.pages=5575-5589&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2004.02.031&rft_dat=%3Cproquest_cross%3E29217455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cda30daf19939889e2f0b483cbb3105d0d00a07458c87fd5d35e11dab2b417fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29217455&rft_id=info:pmid/&rfr_iscdi=true