Loading…

FBST for Mixture Model Selection

The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance stron...

Full description

Saved in:
Bibliographic Details
Main Authors: Lauretto, Marcelo S, Stern, Julio M
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-1980dc54cc4010346f74e93332629ca5ed3f3f635266090f97b8b5dc422da5783
cites
container_end_page 128
container_issue
container_start_page 121
container_title
container_volume 803
creator Lauretto, Marcelo S
Stern, Julio M
description The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance strongly encourages further developments and investigations.
doi_str_mv 10.1063/1.2149787
format conference_proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29225405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29225405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-1980dc54cc4010346f74e93332629ca5ed3f3f635266090f97b8b5dc422da5783</originalsourceid><addsrcrecordid>eNotj7tKA0EUQAdUMMYU_sFUdhvv3DvPUoNRIcEiEezCZh6wMmZ0Zxf8fBe0OnCKA4exGwFLAZruxBKFdMaaM7aYAIaUBHRoz9kMwMkGJb1fsqtaP2DyxtgZ4-uH3Z6n0vNt9zOMfeTbEmLmu5ijH7pyumYXqc01Lv45Z2_rx_3qudm8Pr2s7jeNRy2GRjgLwSvpvQQBJHUyMjoiQo3OtyoGSpQ0KdQaHCRnjvaogpeIoVXG0pzd_nW_-vI9xjocPrvqY87tKZaxHqYPnHYU_QIPxT6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>29225405</pqid></control><display><type>conference_proceeding</type><title>FBST for Mixture Model Selection</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lauretto, Marcelo S ; Stern, Julio M</creator><creatorcontrib>Lauretto, Marcelo S ; Stern, Julio M</creatorcontrib><description>The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance strongly encourages further developments and investigations.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735402928</identifier><identifier>ISBN: 0735402922</identifier><identifier>DOI: 10.1063/1.2149787</identifier><language>eng</language><ispartof>Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, Vol.803, p.121-128</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-1980dc54cc4010346f74e93332629ca5ed3f3f635266090f97b8b5dc422da5783</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><title>FBST for Mixture Model Selection</title><title>Bayesian Inference and Maximum Entropy Methods in Science and Engineering</title><description>The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance strongly encourages further developments and investigations.</description><issn>0094-243X</issn><isbn>9780735402928</isbn><isbn>0735402922</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj7tKA0EUQAdUMMYU_sFUdhvv3DvPUoNRIcEiEezCZh6wMmZ0Zxf8fBe0OnCKA4exGwFLAZruxBKFdMaaM7aYAIaUBHRoz9kMwMkGJb1fsqtaP2DyxtgZ4-uH3Z6n0vNt9zOMfeTbEmLmu5ijH7pyumYXqc01Lv45Z2_rx_3qudm8Pr2s7jeNRy2GRjgLwSvpvQQBJHUyMjoiQo3OtyoGSpQ0KdQaHCRnjvaogpeIoVXG0pzd_nW_-vI9xjocPrvqY87tKZaxHqYPnHYU_QIPxT6w</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Lauretto, Marcelo S</creator><creator>Stern, Julio M</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050101</creationdate><title>FBST for Mixture Model Selection</title><author>Lauretto, Marcelo S ; Stern, Julio M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-1980dc54cc4010346f74e93332629ca5ed3f3f635266090f97b8b5dc422da5783</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauretto, Marcelo S</creatorcontrib><creatorcontrib>Stern, Julio M</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauretto, Marcelo S</au><au>Stern, Julio M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FBST for Mixture Model Selection</atitle><btitle>Bayesian Inference and Maximum Entropy Methods in Science and Engineering</btitle><date>2005-01-01</date><risdate>2005</risdate><volume>803</volume><spage>121</spage><epage>128</epage><pages>121-128</pages><issn>0094-243X</issn><isbn>9780735402928</isbn><isbn>0735402922</isbn><abstract>The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance strongly encourages further developments and investigations.</abstract><doi>10.1063/1.2149787</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, Vol.803, p.121-128
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_29225405
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title FBST for Mixture Model Selection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FBST%20for%20Mixture%20Model%20Selection&rft.btitle=Bayesian%20Inference%20and%20Maximum%20Entropy%20Methods%20in%20Science%20and%20Engineering&rft.au=Lauretto,%20Marcelo%20S&rft.date=2005-01-01&rft.volume=803&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.issn=0094-243X&rft.isbn=9780735402928&rft.isbn_list=0735402922&rft_id=info:doi/10.1063/1.2149787&rft_dat=%3Cproquest%3E29225405%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-1980dc54cc4010346f74e93332629ca5ed3f3f635266090f97b8b5dc422da5783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29225405&rft_id=info:pmid/&rfr_iscdi=true