Loading…
Absorption and transport via tunneling in quantum-well solar cells
Absorption and tunneling are two major physical processes contributing to photocurrent generation in solar cells. Many new “ultra-high efficiency” PV devices utilize quantum effects to enhance their efficiency. This paper calculates the impact of quantum effects on the absorption and tunneling curre...
Saved in:
Published in: | Solar energy materials and solar cells 2006-11, Vol.90 (18), p.3464-3470 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Absorption and tunneling are two major physical processes contributing to photocurrent generation in solar cells. Many new “ultra-high efficiency” PV devices utilize quantum effects to enhance their efficiency. This paper calculates the impact of quantum effects on the absorption and tunneling current as a function of electric fields and light trapping ratios. Results show that increasing electric fields enhance tunneling of photogenerated carriers, which dominates over the opposing effect of reduced absorption. Also, the significant advantage of light enhancement over increasing the number of quantum wells (QWs) has been demonstrated. These calculations allow optimizing the tunneling photocurrents in design of QW solar cells. |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2006.01.004 |