Loading…
Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease
Background Non-invasive renal fibrosis assessment is critical for tailoring personalized decision-making and managing follow-up in patients with chronic kidney disease (CKD). We aimed to exploit machine learning algorithms using clinical and elastosonographic features to distinguish moderate-severe...
Saved in:
Published in: | Journal of nephrology 2024-05, Vol.37 (4), p.1027-1039 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Non-invasive renal fibrosis assessment is critical for tailoring personalized decision-making and managing follow-up in patients with chronic kidney disease (CKD). We aimed to exploit machine learning algorithms using clinical and elastosonographic features to distinguish moderate-severe fibrosis from mild fibrosis among CKD patients.
Methods
A total of 162 patients with CKD who underwent shear wave elastography examinations and renal biopsies at our institution were prospectively enrolled. Four classifiers using machine learning algorithms, including eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbor (KNN), which integrated elastosonographic features and clinical characteristics, were established to differentiate moderate-severe renal fibrosis from mild forms. The area under the receiver operating characteristic curve (AUC) and average precision were employed to compare the performance of constructed models, and the SHapley Additive exPlanations (SHAP) strategy was used to visualize and interpret the model output.
Results
The XGBoost model outperformed the other developed machine learning models, demonstrating optimal diagnostic performance in both the primary (AUC = 0.97, 95% confidence level (CI) 0.94–0.99; average precision = 0.97, 95% CI 0.97–0.98) and five-fold cross-validation (AUC = 0.85, 95% CI 0.73–0.98; average precision = 0.90, 95% CI 0.86–0.93) datasets. The SHAP approach provided visual interpretation for XGBoost, highlighting the features’ impact on the diagnostic process, wherein the estimated glomerular filtration rate provided the largest contribution to the model output, followed by the elastic modulus, then renal length, renal resistive index, and hypertension.
Conclusion
This study proposed an XGBoost model for distinguishing moderate-severe renal fibrosis from mild forms in CKD patients, which could be used to assist clinicians in decision-making and follow-up strategies. Moreover, the SHAP algorithm makes it feasible to visualize and interpret the feature processing and diagnostic processes of the model output.
Graphical Abstract |
---|---|
ISSN: | 1724-6059 1724-6059 |
DOI: | 10.1007/s40620-023-01878-4 |