Loading…
A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead
SUMMARY The introduction of the carboxysome‐based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this e...
Saved in:
Published in: | The Plant journal : for cell and molecular biology 2024-05, Vol.118 (4), p.940-952 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 952 |
container_issue | 4 |
container_start_page | 940 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 118 |
creator | Nguyen, Nghiem D. Pulsford, Sacha B. Förster, Britta Rottet, Sarah Rourke, Loraine Long, Benedict M. Price, G. Dean |
description | SUMMARY
The introduction of the carboxysome‐based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Significance Statement
The efficacy of the cyanobacterial CO2‐concentrating mechanism (CCM) relies on its ability to concentrate CO2 around the Rubisco enzyme, which is natively encapsulated within a carboxysome. As our understanding of carboxysome biogenesis and functionality grows, there is optimism that this microcompartment and the cyanobacterial CCM as a whole, can contribute to addressing global food security. |
doi_str_mv | 10.1111/tpj.16667 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2923325851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923325851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2917-3d4f736d2efb2108963e93273ed7224b2a82e2ce6182bdf529d7eb13d4c236003</originalsourceid><addsrcrecordid>eNpdkE1OwzAQhS0EEqWw4AaW2LBJsceJ07BDFb-qVBYgsbMce0JTJXGwU6A7jsAZOQmGsmI00pvF90ZPj5BjziY8ztnQryZcSpnvkBEXMksEF0-7ZMQKyZI85bBPDkJYMcZzIdMReb6gRvvSvW-Ca_Hr47PUAS2dLYAa1xnsBq-HunumLZql7urQ0sp5OhPUeNdTs2xc1EaHIZxTbV919ASqO0uHJVLvtKV6idoekr1KNwGP_nRMHq8uH2Y3yXxxfTu7mCc9FDxPhE2rGMwCViVwNi2kwEJALtDmAGkJegoIBiWfQmmrDAqbY8mjzYCQjIkxOd3-7b17WWMYVFsHg02jO3TroKAAISCbZjyiJ__QlVv7LqZTgmVpWsSFSJ1tqbe6wY3qfd1qv1GcqZ--Vexb_fatHu7vfg_xDUekdQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054494492</pqid></control><display><type>article</type><title>A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Nguyen, Nghiem D. ; Pulsford, Sacha B. ; Förster, Britta ; Rottet, Sarah ; Rourke, Loraine ; Long, Benedict M. ; Price, G. Dean</creator><creatorcontrib>Nguyen, Nghiem D. ; Pulsford, Sacha B. ; Förster, Britta ; Rottet, Sarah ; Rourke, Loraine ; Long, Benedict M. ; Price, G. Dean</creatorcontrib><description>SUMMARY
The introduction of the carboxysome‐based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Significance Statement
The efficacy of the cyanobacterial CO2‐concentrating mechanism (CCM) relies on its ability to concentrate CO2 around the Rubisco enzyme, which is natively encapsulated within a carboxysome. As our understanding of carboxysome biogenesis and functionality grows, there is optimism that this microcompartment and the cyanobacterial CCM as a whole, can contribute to addressing global food security.</description><identifier>ISSN: 0960-7412</identifier><identifier>ISSN: 1365-313X</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16667</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Bicarbonates ; Carbon dioxide ; carboxysome ; Chloroplasts ; CO2‐concentrating mechanism ; Crop yield ; Crops ; Food security ; Ribulose-bisphosphate carboxylase ; Rubisco ; synthetic biology</subject><ispartof>The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (4), p.940-952</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4616-2967 ; 0000-0003-3120-8608 ; 0000-0001-5906-4912 ; 0000-0002-4322-4755 ; 0000-0001-9179-9214 ; 0000-0002-5231-0954 ; 0000-0002-2600-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Nghiem D.</creatorcontrib><creatorcontrib>Pulsford, Sacha B.</creatorcontrib><creatorcontrib>Förster, Britta</creatorcontrib><creatorcontrib>Rottet, Sarah</creatorcontrib><creatorcontrib>Rourke, Loraine</creatorcontrib><creatorcontrib>Long, Benedict M.</creatorcontrib><creatorcontrib>Price, G. Dean</creatorcontrib><title>A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead</title><title>The Plant journal : for cell and molecular biology</title><description>SUMMARY
The introduction of the carboxysome‐based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Significance Statement
The efficacy of the cyanobacterial CO2‐concentrating mechanism (CCM) relies on its ability to concentrate CO2 around the Rubisco enzyme, which is natively encapsulated within a carboxysome. As our understanding of carboxysome biogenesis and functionality grows, there is optimism that this microcompartment and the cyanobacterial CCM as a whole, can contribute to addressing global food security.</description><subject>Bicarbonates</subject><subject>Carbon dioxide</subject><subject>carboxysome</subject><subject>Chloroplasts</subject><subject>CO2‐concentrating mechanism</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Food security</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Rubisco</subject><subject>synthetic biology</subject><issn>0960-7412</issn><issn>1365-313X</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpdkE1OwzAQhS0EEqWw4AaW2LBJsceJ07BDFb-qVBYgsbMce0JTJXGwU6A7jsAZOQmGsmI00pvF90ZPj5BjziY8ztnQryZcSpnvkBEXMksEF0-7ZMQKyZI85bBPDkJYMcZzIdMReb6gRvvSvW-Ca_Hr47PUAS2dLYAa1xnsBq-HunumLZql7urQ0sp5OhPUeNdTs2xc1EaHIZxTbV919ASqO0uHJVLvtKV6idoekr1KNwGP_nRMHq8uH2Y3yXxxfTu7mCc9FDxPhE2rGMwCViVwNi2kwEJALtDmAGkJegoIBiWfQmmrDAqbY8mjzYCQjIkxOd3-7b17WWMYVFsHg02jO3TroKAAISCbZjyiJ__QlVv7LqZTgmVpWsSFSJ1tqbe6wY3qfd1qv1GcqZ--Vexb_fatHu7vfg_xDUekdQU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Nguyen, Nghiem D.</creator><creator>Pulsford, Sacha B.</creator><creator>Förster, Britta</creator><creator>Rottet, Sarah</creator><creator>Rourke, Loraine</creator><creator>Long, Benedict M.</creator><creator>Price, G. Dean</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4616-2967</orcidid><orcidid>https://orcid.org/0000-0003-3120-8608</orcidid><orcidid>https://orcid.org/0000-0001-5906-4912</orcidid><orcidid>https://orcid.org/0000-0002-4322-4755</orcidid><orcidid>https://orcid.org/0000-0001-9179-9214</orcidid><orcidid>https://orcid.org/0000-0002-5231-0954</orcidid><orcidid>https://orcid.org/0000-0002-2600-8073</orcidid></search><sort><creationdate>202405</creationdate><title>A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead</title><author>Nguyen, Nghiem D. ; Pulsford, Sacha B. ; Förster, Britta ; Rottet, Sarah ; Rourke, Loraine ; Long, Benedict M. ; Price, G. Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2917-3d4f736d2efb2108963e93273ed7224b2a82e2ce6182bdf529d7eb13d4c236003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bicarbonates</topic><topic>Carbon dioxide</topic><topic>carboxysome</topic><topic>Chloroplasts</topic><topic>CO2‐concentrating mechanism</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Food security</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Rubisco</topic><topic>synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Nghiem D.</creatorcontrib><creatorcontrib>Pulsford, Sacha B.</creatorcontrib><creatorcontrib>Förster, Britta</creatorcontrib><creatorcontrib>Rottet, Sarah</creatorcontrib><creatorcontrib>Rourke, Loraine</creatorcontrib><creatorcontrib>Long, Benedict M.</creatorcontrib><creatorcontrib>Price, G. Dean</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Free Archive</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Nghiem D.</au><au>Pulsford, Sacha B.</au><au>Förster, Britta</au><au>Rottet, Sarah</au><au>Rourke, Loraine</au><au>Long, Benedict M.</au><au>Price, G. Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><date>2024-05</date><risdate>2024</risdate><volume>118</volume><issue>4</issue><spage>940</spage><epage>952</epage><pages>940-952</pages><issn>0960-7412</issn><issn>1365-313X</issn><eissn>1365-313X</eissn><abstract>SUMMARY
The introduction of the carboxysome‐based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Significance Statement
The efficacy of the cyanobacterial CO2‐concentrating mechanism (CCM) relies on its ability to concentrate CO2 around the Rubisco enzyme, which is natively encapsulated within a carboxysome. As our understanding of carboxysome biogenesis and functionality grows, there is optimism that this microcompartment and the cyanobacterial CCM as a whole, can contribute to addressing global food security.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tpj.16667</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4616-2967</orcidid><orcidid>https://orcid.org/0000-0003-3120-8608</orcidid><orcidid>https://orcid.org/0000-0001-5906-4912</orcidid><orcidid>https://orcid.org/0000-0002-4322-4755</orcidid><orcidid>https://orcid.org/0000-0001-9179-9214</orcidid><orcidid>https://orcid.org/0000-0002-5231-0954</orcidid><orcidid>https://orcid.org/0000-0002-2600-8073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2024-05, Vol.118 (4), p.940-952 |
issn | 0960-7412 1365-313X 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_2923325851 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bicarbonates Carbon dioxide carboxysome Chloroplasts CO2‐concentrating mechanism Crop yield Crops Food security Ribulose-bisphosphate carboxylase Rubisco synthetic biology |
title | A carboxysome‐based CO2 concentrating mechanism for C3 crop chloroplasts: advances and the road ahead |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20carboxysome%E2%80%90based%20CO2%20concentrating%20mechanism%20for%20C3%20crop%20chloroplasts:%20advances%20and%20the%20road%20ahead&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Nguyen,%20Nghiem%20D.&rft.date=2024-05&rft.volume=118&rft.issue=4&rft.spage=940&rft.epage=952&rft.pages=940-952&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16667&rft_dat=%3Cproquest_wiley%3E2923325851%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2917-3d4f736d2efb2108963e93273ed7224b2a82e2ce6182bdf529d7eb13d4c236003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3054494492&rft_id=info:pmid/&rfr_iscdi=true |