Loading…

Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system

We investigated the effects of growth pressure on AlGaN growth and material properties of GaN:Mg using a multiwafer metal organic vapor phase epitaxy (MOVPE) reactor. We developed a three-layer laminar flow gas injection reactor to control the pre-reaction between adducts in GaN MOVPE. Using this re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2004-12, Vol.272 (1), p.348-352
Main Authors: Tokunaga, H., Ubukata, A., Yano, Y., Yamaguchi, A., Akutsu, N., Yamasaki, T., Matsumoto, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3
cites cdi_FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3
container_end_page 352
container_issue 1
container_start_page 348
container_title Journal of crystal growth
container_volume 272
creator Tokunaga, H.
Ubukata, A.
Yano, Y.
Yamaguchi, A.
Akutsu, N.
Yamasaki, T.
Matsumoto, K.
description We investigated the effects of growth pressure on AlGaN growth and material properties of GaN:Mg using a multiwafer metal organic vapor phase epitaxy (MOVPE) reactor. We developed a three-layer laminar flow gas injection reactor to control the pre-reaction between adducts in GaN MOVPE. Using this reactor, we could grow Al 0.09Ga 0.91N at a growth rate of 0.8 μm/h, and GaN:Mg with a carrier concentration of 1.4×10 18 cm −3 at a growth rate of 3.5 μm/h at atmospheric pressure. While we grew Al 0.24Ga 0.76N at a growth rate of 0.8 μm/h at 300 Torr, we found that the hole carrier concentration of GaN:Mg grown at 300 Torr is more than one order of magnitude lower than that of GaN:Mg grown at atmospheric pressure.
doi_str_mv 10.1016/j.jcrysgro.2004.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29243474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202480401142X</els_id><sourcerecordid>29243474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi1EJZaWv4B8gVvC-KPJ5kZVlYJU6KWcLccZb71K4uBxWvbf49UWceQylkbPO-N5GHsvoBYgmk_7eu_SgXYp1hJA19DVINpXbCO2raouAeRrtilVViD19g17S7QHKEkBG5ZvvEeXiUfPy4Tn_MiXhERrQh5nfjXe2h_czgP_vquGuODAj40jOfOVwrzj0zrm8Gw9Jj5htiOPaWfn4PiTXWLiy6Ml5LiEbH8fOB0o43TBzrwdCd-9vOfs55ebh-uv1d397bfrq7vKadXmqi9_7KRA571Fp6VqbQsa-6ac4RWCVcL67VYPAzol265XjeqHBtpOXMpeOXXOPp7mLin-WpGymQI5HEc7Y1zJyE5qpVtdwOYEuhSJEnqzpDDZdDACzFGy2Zu_ks1RsoHOFMkl-OFlgyVnR5_s7AL9SzdKyU5D4T6fOCznPgVMhlzA2eEQUtFvhhj-t-oPt-OX3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29243474</pqid></control><display><type>article</type><title>Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system</title><source>Elsevier</source><creator>Tokunaga, H. ; Ubukata, A. ; Yano, Y. ; Yamaguchi, A. ; Akutsu, N. ; Yamasaki, T. ; Matsumoto, K.</creator><creatorcontrib>Tokunaga, H. ; Ubukata, A. ; Yano, Y. ; Yamaguchi, A. ; Akutsu, N. ; Yamasaki, T. ; Matsumoto, K.</creatorcontrib><description>We investigated the effects of growth pressure on AlGaN growth and material properties of GaN:Mg using a multiwafer metal organic vapor phase epitaxy (MOVPE) reactor. We developed a three-layer laminar flow gas injection reactor to control the pre-reaction between adducts in GaN MOVPE. Using this reactor, we could grow Al 0.09Ga 0.91N at a growth rate of 0.8 μm/h, and GaN:Mg with a carrier concentration of 1.4×10 18 cm −3 at a growth rate of 3.5 μm/h at atmospheric pressure. While we grew Al 0.24Ga 0.76N at a growth rate of 0.8 μm/h at 300 Torr, we found that the hole carrier concentration of GaN:Mg grown at 300 Torr is more than one order of magnitude lower than that of GaN:Mg grown at atmospheric pressure.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2004.09.017</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Mg doping ; A1. Parasitic reaction ; A2. Atmospheric pressure growth ; A3. Metalorganic vapor phase epitaxy ; B1. AlGaN ; B1. GaN ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2004-12, Vol.272 (1), p.348-352</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3</citedby><cites>FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16332940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokunaga, H.</creatorcontrib><creatorcontrib>Ubukata, A.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Yamaguchi, A.</creatorcontrib><creatorcontrib>Akutsu, N.</creatorcontrib><creatorcontrib>Yamasaki, T.</creatorcontrib><creatorcontrib>Matsumoto, K.</creatorcontrib><title>Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system</title><title>Journal of crystal growth</title><description>We investigated the effects of growth pressure on AlGaN growth and material properties of GaN:Mg using a multiwafer metal organic vapor phase epitaxy (MOVPE) reactor. We developed a three-layer laminar flow gas injection reactor to control the pre-reaction between adducts in GaN MOVPE. Using this reactor, we could grow Al 0.09Ga 0.91N at a growth rate of 0.8 μm/h, and GaN:Mg with a carrier concentration of 1.4×10 18 cm −3 at a growth rate of 3.5 μm/h at atmospheric pressure. While we grew Al 0.24Ga 0.76N at a growth rate of 0.8 μm/h at 300 Torr, we found that the hole carrier concentration of GaN:Mg grown at 300 Torr is more than one order of magnitude lower than that of GaN:Mg grown at atmospheric pressure.</description><subject>A1. Mg doping</subject><subject>A1. Parasitic reaction</subject><subject>A2. Atmospheric pressure growth</subject><subject>A3. Metalorganic vapor phase epitaxy</subject><subject>B1. AlGaN</subject><subject>B1. GaN</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi1EJZaWv4B8gVvC-KPJ5kZVlYJU6KWcLccZb71K4uBxWvbf49UWceQylkbPO-N5GHsvoBYgmk_7eu_SgXYp1hJA19DVINpXbCO2raouAeRrtilVViD19g17S7QHKEkBG5ZvvEeXiUfPy4Tn_MiXhERrQh5nfjXe2h_czgP_vquGuODAj40jOfOVwrzj0zrm8Gw9Jj5htiOPaWfn4PiTXWLiy6Ml5LiEbH8fOB0o43TBzrwdCd-9vOfs55ebh-uv1d397bfrq7vKadXmqi9_7KRA571Fp6VqbQsa-6ac4RWCVcL67VYPAzol265XjeqHBtpOXMpeOXXOPp7mLin-WpGymQI5HEc7Y1zJyE5qpVtdwOYEuhSJEnqzpDDZdDACzFGy2Zu_ks1RsoHOFMkl-OFlgyVnR5_s7AL9SzdKyU5D4T6fOCznPgVMhlzA2eEQUtFvhhj-t-oPt-OX3A</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Tokunaga, H.</creator><creator>Ubukata, A.</creator><creator>Yano, Y.</creator><creator>Yamaguchi, A.</creator><creator>Akutsu, N.</creator><creator>Yamasaki, T.</creator><creator>Matsumoto, K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20041201</creationdate><title>Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system</title><author>Tokunaga, H. ; Ubukata, A. ; Yano, Y. ; Yamaguchi, A. ; Akutsu, N. ; Yamasaki, T. ; Matsumoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>A1. Mg doping</topic><topic>A1. Parasitic reaction</topic><topic>A2. Atmospheric pressure growth</topic><topic>A3. Metalorganic vapor phase epitaxy</topic><topic>B1. AlGaN</topic><topic>B1. GaN</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokunaga, H.</creatorcontrib><creatorcontrib>Ubukata, A.</creatorcontrib><creatorcontrib>Yano, Y.</creatorcontrib><creatorcontrib>Yamaguchi, A.</creatorcontrib><creatorcontrib>Akutsu, N.</creatorcontrib><creatorcontrib>Yamasaki, T.</creatorcontrib><creatorcontrib>Matsumoto, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokunaga, H.</au><au>Ubukata, A.</au><au>Yano, Y.</au><au>Yamaguchi, A.</au><au>Akutsu, N.</au><au>Yamasaki, T.</au><au>Matsumoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system</atitle><jtitle>Journal of crystal growth</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>272</volume><issue>1</issue><spage>348</spage><epage>352</epage><pages>348-352</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>We investigated the effects of growth pressure on AlGaN growth and material properties of GaN:Mg using a multiwafer metal organic vapor phase epitaxy (MOVPE) reactor. We developed a three-layer laminar flow gas injection reactor to control the pre-reaction between adducts in GaN MOVPE. Using this reactor, we could grow Al 0.09Ga 0.91N at a growth rate of 0.8 μm/h, and GaN:Mg with a carrier concentration of 1.4×10 18 cm −3 at a growth rate of 3.5 μm/h at atmospheric pressure. While we grew Al 0.24Ga 0.76N at a growth rate of 0.8 μm/h at 300 Torr, we found that the hole carrier concentration of GaN:Mg grown at 300 Torr is more than one order of magnitude lower than that of GaN:Mg grown at atmospheric pressure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2004.09.017</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2004-12, Vol.272 (1), p.348-352
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_29243474
source Elsevier
subjects A1. Mg doping
A1. Parasitic reaction
A2. Atmospheric pressure growth
A3. Metalorganic vapor phase epitaxy
B1. AlGaN
B1. GaN
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Vapor phase epitaxy
growth from vapor phase
title Effects of growth pressure on AlGaN and Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20growth%20pressure%20on%20AlGaN%20and%20Mg-doped%20GaN%20grown%20using%20multiwafer%20metal%20organic%20vapor%20phase%20epitaxy%20system&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Tokunaga,%20H.&rft.date=2004-12-01&rft.volume=272&rft.issue=1&rft.spage=348&rft.epage=352&rft.pages=348-352&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2004.09.017&rft_dat=%3Cproquest_cross%3E29243474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-b016921ecffaec4237a704eb6248f3e0a31af884ddec3279b363bd6079152b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29243474&rft_id=info:pmid/&rfr_iscdi=true