Loading…

The N-terminal region of the ATG8 autophagy protein LC3C is essential for its membrane fusion properties

Autophagy is a catabolic process in which a double-membrane organelle, the autophagosome (AP), engulfs cellular components that will be degraded in the lysosomes. ATG8 protein family members participate at various stages of AP formation. The present study compares the capacity to induce lipid-vesicl...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-03, Vol.262 (Pt 1), p.129835-129835, Article 129835
Main Authors: Ballesteros, Uxue, Iriondo, Marina N., Varela, Yaiza R., Goñi, Félix M., Alonso, Alicia, Montes, L. Ruth, Etxaniz, Asier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autophagy is a catabolic process in which a double-membrane organelle, the autophagosome (AP), engulfs cellular components that will be degraded in the lysosomes. ATG8 protein family members participate at various stages of AP formation. The present study compares the capacity to induce lipid-vesicle tethering and fusion of two ATG8 family members, LC3B and LC3C, with model membranes. LC3B is the most thoroughly studied ATG8 protein. It is generally considered as an autophagosomal marker and a canonical representative of the LC3 subfamily. LC3C is less studied, but recent data have reported its implication in various processes, crucial to cellular homeostasis. The results in this paper show that LC3C induces higher levels of tethering and of intervesicular lipid mixing than LC3B. As the N-terminus of LC3C is different from that of the other family members, various mutants of the N-terminal region of both LC3B and LC3C were designed, and their activities compared. It was concluded that the N-terminal region of LC3C was responsible for the enhanced vesicle tethering, membrane perturbation and vesicle-vesicle fusion activities of LC3C as compared to LC3B. The results suggest a specialized function of LC3C in the AP expansion process.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.129835