Loading…
Resetting thermal limits: 10-year-old white sturgeon display pronounced but reversible thermal plasticity
While many ectotherms improve thermal tolerance in response to prolonged thermal stress, little is known about the lasting effects of warm acclimation after returning to cooler temperatures. Furthermore, thermal stress may disproportionately impact threatened and endangered species. To address this,...
Saved in:
Published in: | Journal of thermal biology 2024-01, Vol.119, p.103807-103807, Article 103807 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While many ectotherms improve thermal tolerance in response to prolonged thermal stress, little is known about the lasting effects of warm acclimation after returning to cooler temperatures. Furthermore, thermal stress may disproportionately impact threatened and endangered species. To address this, we repeatedly measured critical thermal maxima (CTmax; °C) and associated stress responses (hematocrit, hemoglobin concentration, plasma cortisol) of endangered subadult white sturgeon (Acipenser transmontanus) in response to control temperature (pre-acclimation; 14°C), after 1 month at either control or warm temperature (acclimation; 14°C or 20°C), and after one smonth following return to control temperature (post-acclimation; 14°C). While control fish demonstrated fairly repeatable thermal tolerance (interclass correlation coefficient = 0.479), warm-acclimated fish experienced a ∼3.1°C increase in thermal tolerance and when re-acclimated to control temperature, decreased thermal tolerance ∼1.9°C. Hematocrit, hemoglobin concentration, and final splenic somatic index (spleen mass relative to whole body mass, collected after post-acclimation CTmax) were not significantly different between control and treatment fish, suggesting no effects of warm acclimation on aerobic capacity. Plasma cortisol was significantly higher in control fish after pre-acclimation and post-acclimation CTmax trials, but importantly, acclimation temperature did not affect this response. Strikingly, final hepatosomatic index (relative liver size) was 45% lower in treatment fish, indicating warm acclimation may have lasting effects on energy usage and metabolism, even after reacclimating to control temperature. To our knowledge, these 10-year-old subadult sturgeon are the oldest sturgeon experimentally tested with regards to thermal plasticity and demonstrate incredible capacity for thermal acclimation relative to other fishes. However, more research is needed to determine whether the ability to acclimate to warm temperature may come with a persistent cost.
•Subadult white sturgeon greatly increase thermal tolerance with warm acclimation.•This increased thermal tolerance is lost after reacclimation to control temperature.•CTmax is repeatable in sequential trials but not between first and third trials.•Post-CTmax stress responses are similar in control and warm-acclimated fish.•Fish exposed to warm temperature have smaller livers even after one-month recovery. |
---|---|
ISSN: | 0306-4565 1879-0992 |
DOI: | 10.1016/j.jtherbio.2024.103807 |