Loading…
Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal a...
Saved in:
Published in: | Polymers 2024-02, Vol.16 (3), p.410 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3 |
container_end_page | |
container_issue | 3 |
container_start_page | 410 |
container_title | Polymers |
container_volume | 16 |
creator | Kalia, Vipin C Patel, Sanjay K S Karthikeyan, Kugalur K Jeya, Marimuthu Kim, In-Won Lee, Jung-Kul |
description | The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably. |
doi_str_mv | 10.3390/polym16030410 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925034489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782092379</galeid><sourcerecordid>A782092379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</originalsourceid><addsrcrecordid>eNptkc9PHCEYhklTU83qsdeGpJdeRhl-DHC0G6smbjTRnics87FimGEKM4f978vq2mpTOEDI8715wovQ55qcMqbJ2RjDtq8bwgivyQd0RIlkFWcN-fjmfohOcn4iZXHRNLX8hA6ZYkxSrY_Qw8oMfpyDmfywwStvU1x7E_ASQsCrmMbHGOJmi11MeHoEfD_nyfjBrAPguxS72U4-Djg6_N3HZx1I-RgdOBMynOzPBfr54-JheVXd3F5eL89vKlsEpgrWtDECnCuSHSVKgtK2qWtuQGhhlWJQd42WlgslO86N5IpRo5gDJ5ywbIG-veSOKf6aIU9t77Mt5maAOOeWaioI41zpgn79B32KcxqK3Y5iWiou6F9qYwK0fnBxSsbuQttzqSgppNxlnf6HKruD3ts4gPPl_d1A9TJQfjfnBK4dk-9N2rY1aXdFtu-KLPyXvey87qH7Q7_Wxn4D4O2XgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923978452</pqid></control><display><type>article</type><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</creator><creatorcontrib>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</creatorcontrib><description>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16030410</identifier><identifier>PMID: 38337299</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Biodegradation ; Bioengineering ; Bioplastics ; Biopolymers ; Biosynthesis ; Cell death ; Cell division ; Cellulose acetate ; Chemical processes ; Composite materials ; Critical components ; Drug delivery systems ; Enzymes ; Genetic engineering ; Mechanical properties ; Medical equipment ; Methods ; Microorganisms ; Morphology ; Natural gas ; Packaging ; Plastics ; Polycaprolactone ; Polyhydroxyalkanoates ; Polylactic acid ; Polymerization ; Polymers ; Radiation ; Renewable resources ; Spiders ; Sustainable development ; Synchronism ; Waste disposal</subject><ispartof>Polymers, 2024-02, Vol.16 (3), p.410</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</cites><orcidid>0000-0003-1658-0911 ; 0000-0001-7384-5301 ; 0000-0001-7892-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2923978452/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2923978452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38337299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalia, Vipin C</creatorcontrib><creatorcontrib>Patel, Sanjay K S</creatorcontrib><creatorcontrib>Karthikeyan, Kugalur K</creatorcontrib><creatorcontrib>Jeya, Marimuthu</creatorcontrib><creatorcontrib>Kim, In-Won</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</description><subject>Analysis</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Bioplastics</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cellulose acetate</subject><subject>Chemical processes</subject><subject>Composite materials</subject><subject>Critical components</subject><subject>Drug delivery systems</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Natural gas</subject><subject>Packaging</subject><subject>Plastics</subject><subject>Polycaprolactone</subject><subject>Polyhydroxyalkanoates</subject><subject>Polylactic acid</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>Spiders</subject><subject>Sustainable development</subject><subject>Synchronism</subject><subject>Waste disposal</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc9PHCEYhklTU83qsdeGpJdeRhl-DHC0G6smbjTRnics87FimGEKM4f978vq2mpTOEDI8715wovQ55qcMqbJ2RjDtq8bwgivyQd0RIlkFWcN-fjmfohOcn4iZXHRNLX8hA6ZYkxSrY_Qw8oMfpyDmfywwStvU1x7E_ASQsCrmMbHGOJmi11MeHoEfD_nyfjBrAPguxS72U4-Djg6_N3HZx1I-RgdOBMynOzPBfr54-JheVXd3F5eL89vKlsEpgrWtDECnCuSHSVKgtK2qWtuQGhhlWJQd42WlgslO86N5IpRo5gDJ5ywbIG-veSOKf6aIU9t77Mt5maAOOeWaioI41zpgn79B32KcxqK3Y5iWiou6F9qYwK0fnBxSsbuQttzqSgppNxlnf6HKruD3ts4gPPl_d1A9TJQfjfnBK4dk-9N2rY1aXdFtu-KLPyXvey87qH7Q7_Wxn4D4O2XgA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kalia, Vipin C</creator><creator>Patel, Sanjay K S</creator><creator>Karthikeyan, Kugalur K</creator><creator>Jeya, Marimuthu</creator><creator>Kim, In-Won</creator><creator>Lee, Jung-Kul</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1658-0911</orcidid><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0001-7892-2601</orcidid></search><sort><creationdate>20240201</creationdate><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><author>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Bioplastics</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cellulose acetate</topic><topic>Chemical processes</topic><topic>Composite materials</topic><topic>Critical components</topic><topic>Drug delivery systems</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Natural gas</topic><topic>Packaging</topic><topic>Plastics</topic><topic>Polycaprolactone</topic><topic>Polyhydroxyalkanoates</topic><topic>Polylactic acid</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>Spiders</topic><topic>Sustainable development</topic><topic>Synchronism</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalia, Vipin C</creatorcontrib><creatorcontrib>Patel, Sanjay K S</creatorcontrib><creatorcontrib>Karthikeyan, Kugalur K</creatorcontrib><creatorcontrib>Jeya, Marimuthu</creatorcontrib><creatorcontrib>Kim, In-Won</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalia, Vipin C</au><au>Patel, Sanjay K S</au><au>Karthikeyan, Kugalur K</au><au>Jeya, Marimuthu</au><au>Kim, In-Won</au><au>Lee, Jung-Kul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>410</spage><pages>410-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38337299</pmid><doi>10.3390/polym16030410</doi><orcidid>https://orcid.org/0000-0003-1658-0911</orcidid><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0001-7892-2601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-02, Vol.16 (3), p.410 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_2925034489 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Analysis Biodegradation Bioengineering Bioplastics Biopolymers Biosynthesis Cell death Cell division Cellulose acetate Chemical processes Composite materials Critical components Drug delivery systems Enzymes Genetic engineering Mechanical properties Medical equipment Methods Microorganisms Morphology Natural gas Packaging Plastics Polycaprolactone Polyhydroxyalkanoates Polylactic acid Polymerization Polymers Radiation Renewable resources Spiders Sustainable development Synchronism Waste disposal |
title | Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Microbial%20Cell%20Morphology%20for%20the%20Sustainable%20Production%20of%20Biopolymers&rft.jtitle=Polymers&rft.au=Kalia,%20Vipin%20C&rft.date=2024-02-01&rft.volume=16&rft.issue=3&rft.spage=410&rft.pages=410-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16030410&rft_dat=%3Cgale_proqu%3EA782092379%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923978452&rft_id=info:pmid/38337299&rft_galeid=A782092379&rfr_iscdi=true |