Loading…

Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers

The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal a...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-02, Vol.16 (3), p.410
Main Authors: Kalia, Vipin C, Patel, Sanjay K S, Karthikeyan, Kugalur K, Jeya, Marimuthu, Kim, In-Won, Lee, Jung-Kul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3
container_end_page
container_issue 3
container_start_page 410
container_title Polymers
container_volume 16
creator Kalia, Vipin C
Patel, Sanjay K S
Karthikeyan, Kugalur K
Jeya, Marimuthu
Kim, In-Won
Lee, Jung-Kul
description The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
doi_str_mv 10.3390/polym16030410
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2925034489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782092379</galeid><sourcerecordid>A782092379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</originalsourceid><addsrcrecordid>eNptkc9PHCEYhklTU83qsdeGpJdeRhl-DHC0G6smbjTRnics87FimGEKM4f978vq2mpTOEDI8715wovQ55qcMqbJ2RjDtq8bwgivyQd0RIlkFWcN-fjmfohOcn4iZXHRNLX8hA6ZYkxSrY_Qw8oMfpyDmfywwStvU1x7E_ASQsCrmMbHGOJmi11MeHoEfD_nyfjBrAPguxS72U4-Djg6_N3HZx1I-RgdOBMynOzPBfr54-JheVXd3F5eL89vKlsEpgrWtDECnCuSHSVKgtK2qWtuQGhhlWJQd42WlgslO86N5IpRo5gDJ5ywbIG-veSOKf6aIU9t77Mt5maAOOeWaioI41zpgn79B32KcxqK3Y5iWiou6F9qYwK0fnBxSsbuQttzqSgppNxlnf6HKruD3ts4gPPl_d1A9TJQfjfnBK4dk-9N2rY1aXdFtu-KLPyXvey87qH7Q7_Wxn4D4O2XgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923978452</pqid></control><display><type>article</type><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</creator><creatorcontrib>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</creatorcontrib><description>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16030410</identifier><identifier>PMID: 38337299</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Biodegradation ; Bioengineering ; Bioplastics ; Biopolymers ; Biosynthesis ; Cell death ; Cell division ; Cellulose acetate ; Chemical processes ; Composite materials ; Critical components ; Drug delivery systems ; Enzymes ; Genetic engineering ; Mechanical properties ; Medical equipment ; Methods ; Microorganisms ; Morphology ; Natural gas ; Packaging ; Plastics ; Polycaprolactone ; Polyhydroxyalkanoates ; Polylactic acid ; Polymerization ; Polymers ; Radiation ; Renewable resources ; Spiders ; Sustainable development ; Synchronism ; Waste disposal</subject><ispartof>Polymers, 2024-02, Vol.16 (3), p.410</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</cites><orcidid>0000-0003-1658-0911 ; 0000-0001-7384-5301 ; 0000-0001-7892-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2923978452/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2923978452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38337299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalia, Vipin C</creatorcontrib><creatorcontrib>Patel, Sanjay K S</creatorcontrib><creatorcontrib>Karthikeyan, Kugalur K</creatorcontrib><creatorcontrib>Jeya, Marimuthu</creatorcontrib><creatorcontrib>Kim, In-Won</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</description><subject>Analysis</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Bioplastics</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cellulose acetate</subject><subject>Chemical processes</subject><subject>Composite materials</subject><subject>Critical components</subject><subject>Drug delivery systems</subject><subject>Enzymes</subject><subject>Genetic engineering</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Natural gas</subject><subject>Packaging</subject><subject>Plastics</subject><subject>Polycaprolactone</subject><subject>Polyhydroxyalkanoates</subject><subject>Polylactic acid</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Radiation</subject><subject>Renewable resources</subject><subject>Spiders</subject><subject>Sustainable development</subject><subject>Synchronism</subject><subject>Waste disposal</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc9PHCEYhklTU83qsdeGpJdeRhl-DHC0G6smbjTRnics87FimGEKM4f978vq2mpTOEDI8715wovQ55qcMqbJ2RjDtq8bwgivyQd0RIlkFWcN-fjmfohOcn4iZXHRNLX8hA6ZYkxSrY_Qw8oMfpyDmfywwStvU1x7E_ASQsCrmMbHGOJmi11MeHoEfD_nyfjBrAPguxS72U4-Djg6_N3HZx1I-RgdOBMynOzPBfr54-JheVXd3F5eL89vKlsEpgrWtDECnCuSHSVKgtK2qWtuQGhhlWJQd42WlgslO86N5IpRo5gDJ5ywbIG-veSOKf6aIU9t77Mt5maAOOeWaioI41zpgn79B32KcxqK3Y5iWiou6F9qYwK0fnBxSsbuQttzqSgppNxlnf6HKruD3ts4gPPl_d1A9TJQfjfnBK4dk-9N2rY1aXdFtu-KLPyXvey87qH7Q7_Wxn4D4O2XgA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kalia, Vipin C</creator><creator>Patel, Sanjay K S</creator><creator>Karthikeyan, Kugalur K</creator><creator>Jeya, Marimuthu</creator><creator>Kim, In-Won</creator><creator>Lee, Jung-Kul</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1658-0911</orcidid><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0001-7892-2601</orcidid></search><sort><creationdate>20240201</creationdate><title>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</title><author>Kalia, Vipin C ; Patel, Sanjay K S ; Karthikeyan, Kugalur K ; Jeya, Marimuthu ; Kim, In-Won ; Lee, Jung-Kul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Bioplastics</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cellulose acetate</topic><topic>Chemical processes</topic><topic>Composite materials</topic><topic>Critical components</topic><topic>Drug delivery systems</topic><topic>Enzymes</topic><topic>Genetic engineering</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Natural gas</topic><topic>Packaging</topic><topic>Plastics</topic><topic>Polycaprolactone</topic><topic>Polyhydroxyalkanoates</topic><topic>Polylactic acid</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Radiation</topic><topic>Renewable resources</topic><topic>Spiders</topic><topic>Sustainable development</topic><topic>Synchronism</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalia, Vipin C</creatorcontrib><creatorcontrib>Patel, Sanjay K S</creatorcontrib><creatorcontrib>Karthikeyan, Kugalur K</creatorcontrib><creatorcontrib>Jeya, Marimuthu</creatorcontrib><creatorcontrib>Kim, In-Won</creatorcontrib><creatorcontrib>Lee, Jung-Kul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalia, Vipin C</au><au>Patel, Sanjay K S</au><au>Karthikeyan, Kugalur K</au><au>Jeya, Marimuthu</au><au>Kim, In-Won</au><au>Lee, Jung-Kul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>3</issue><spage>410</spage><pages>410-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38337299</pmid><doi>10.3390/polym16030410</doi><orcidid>https://orcid.org/0000-0003-1658-0911</orcidid><orcidid>https://orcid.org/0000-0001-7384-5301</orcidid><orcidid>https://orcid.org/0000-0001-7892-2601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-02, Vol.16 (3), p.410
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_2925034489
source Open Access: PubMed Central; Publicly Available Content Database
subjects Analysis
Biodegradation
Bioengineering
Bioplastics
Biopolymers
Biosynthesis
Cell death
Cell division
Cellulose acetate
Chemical processes
Composite materials
Critical components
Drug delivery systems
Enzymes
Genetic engineering
Mechanical properties
Medical equipment
Methods
Microorganisms
Morphology
Natural gas
Packaging
Plastics
Polycaprolactone
Polyhydroxyalkanoates
Polylactic acid
Polymerization
Polymers
Radiation
Renewable resources
Spiders
Sustainable development
Synchronism
Waste disposal
title Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Microbial%20Cell%20Morphology%20for%20the%20Sustainable%20Production%20of%20Biopolymers&rft.jtitle=Polymers&rft.au=Kalia,%20Vipin%20C&rft.date=2024-02-01&rft.volume=16&rft.issue=3&rft.spage=410&rft.pages=410-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16030410&rft_dat=%3Cgale_proqu%3EA782092379%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-eb26a5eff360d2087e89c6114ae595c883e1d697c4587d44a74832a83fef5f5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923978452&rft_id=info:pmid/38337299&rft_galeid=A782092379&rfr_iscdi=true