Loading…
Structure-dynamics correlations in composite PF127-PEG-based hydrogels; cohesive/hydrophobic interactions determine phase and rheology and identify the role of micelle concentration in controlling 3D extrusion printability
[Display omitted] A library of composite polymer networks (CPNs) were formed by combining Pluronic F127, as the primary gelator, with a range of di-acrylate functionalised PEG polymers, which tune the rheological properties and provide UV crosslinkability. A coarse-grained sol–gel room temperature p...
Saved in:
Published in: | Journal of colloid and interface science 2024-04, Vol.660, p.302-313 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
A library of composite polymer networks (CPNs) were formed by combining Pluronic F127, as the primary gelator, with a range of di-acrylate functionalised PEG polymers, which tune the rheological properties and provide UV crosslinkability. A coarse-grained sol–gel room temperature phase diagram was constructed for the CPN library, which identifies PEG-dependent disruption of micelles as leading to liquefication. Small angle X-ray scattering and rheological measurements provide detailed insight into; (i) micelle-micelle ordering; (ii) micelle-micelle disruption, and; (iii) acrylate-micelle disruption; with contributions that depend on composition, including weak PEG chain length and end group effects. The influence of composition on 3D extrusion printability through modulation of the cohesive/hydrophobic interactions was assessed. It was found that only micelle content provides consistent changes in printing fidelity, controlled largely by printing conditions (pressure and feed rate). Finally, the hydrogels were shown to be UV photo-crosslinkable, which further improves fidelity and structural integrity, and usefully reduces the mesh size. Our results provide a guide for design of 3D-printable CPN inks for future biomedical applications. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.12.151 |