Loading…
Frequency-domain generalized total least-squares identification for modal analysis
This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function bas...
Saved in:
Published in: | Journal of sound and vibration 2004-11, Vol.278 (1), p.21-38 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13 |
container_end_page | 38 |
container_issue | 1 |
container_start_page | 21 |
container_title | Journal of sound and vibration |
container_volume | 278 |
creator | Verboven, P. Guillaume, P. Cauberghe, B. Parloo, E. Vanlanduit, S. |
description | This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data. |
doi_str_mv | 10.1016/j.jsv.2003.09.058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29251915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X03012458</els_id><sourcerecordid>29251915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVJoY6bH9DbXtLbbke7K2VFTsUkbSFQKA3kJsbSqMisV7FmbXB-fWQcyK2nuXzvDe8T4ouERoLU3zbNhg9NC9A1YBpQwwexkGBUPSg9XIgFQNvWvYanT-KSeQMApu_6hfhzn2m3p8kda5-2GKfqH02UcYwv5Ks5zThWIyHPNe_2mImr6GmaY4gO55imKqRcbZMvGE44HjnyZ_Ex4Mh09XaX4vH-7u_qZ_3w-8ev1feH2nVKz_XgZdChIxfam7V2SjlHw9pDH7q1Ut4HcAQI4BX2bddJp4wyBnv0QesS7pbi67n3OacygWe7jexoHHGitGfbmlZJI1UB5Rl0OTFnCvY5xy3mo5VgT_bsxhZ79mTPgrHFXslcv5UjOxxDxslFfg9qedPrwRTu9sxRWXqIlC27WHSSj5ncbH2K__nyCmR9h1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29251915</pqid></control><display><type>article</type><title>Frequency-domain generalized total least-squares identification for modal analysis</title><source>Elsevier</source><creator>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</creator><creatorcontrib>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</creatorcontrib><description>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2003.09.058</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Measurement and testing methods ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2004-11, Vol.278 (1), p.21-38</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</citedby><cites>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16174689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verboven, P.</creatorcontrib><creatorcontrib>Guillaume, P.</creatorcontrib><creatorcontrib>Cauberghe, B.</creatorcontrib><creatorcontrib>Parloo, E.</creatorcontrib><creatorcontrib>Vanlanduit, S.</creatorcontrib><title>Frequency-domain generalized total least-squares identification for modal analysis</title><title>Journal of sound and vibration</title><description>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEQhUVJoY6bH9DbXtLbbke7K2VFTsUkbSFQKA3kJsbSqMisV7FmbXB-fWQcyK2nuXzvDe8T4ouERoLU3zbNhg9NC9A1YBpQwwexkGBUPSg9XIgFQNvWvYanT-KSeQMApu_6hfhzn2m3p8kda5-2GKfqH02UcYwv5Ks5zThWIyHPNe_2mImr6GmaY4gO55imKqRcbZMvGE44HjnyZ_Ex4Mh09XaX4vH-7u_qZ_3w-8ev1feH2nVKz_XgZdChIxfam7V2SjlHw9pDH7q1Ut4HcAQI4BX2bddJp4wyBnv0QesS7pbi67n3OacygWe7jexoHHGitGfbmlZJI1UB5Rl0OTFnCvY5xy3mo5VgT_bsxhZ79mTPgrHFXslcv5UjOxxDxslFfg9qedPrwRTu9sxRWXqIlC27WHSSj5ncbH2K__nyCmR9h1Q</recordid><startdate>20041122</startdate><enddate>20041122</enddate><creator>Verboven, P.</creator><creator>Guillaume, P.</creator><creator>Cauberghe, B.</creator><creator>Parloo, E.</creator><creator>Vanlanduit, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20041122</creationdate><title>Frequency-domain generalized total least-squares identification for modal analysis</title><author>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verboven, P.</creatorcontrib><creatorcontrib>Guillaume, P.</creatorcontrib><creatorcontrib>Cauberghe, B.</creatorcontrib><creatorcontrib>Parloo, E.</creatorcontrib><creatorcontrib>Vanlanduit, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verboven, P.</au><au>Guillaume, P.</au><au>Cauberghe, B.</au><au>Parloo, E.</au><au>Vanlanduit, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain generalized total least-squares identification for modal analysis</atitle><jtitle>Journal of sound and vibration</jtitle><date>2004-11-22</date><risdate>2004</risdate><volume>278</volume><issue>1</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2003.09.058</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2004-11, Vol.278 (1), p.21-38 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_29251915 |
source | Elsevier |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Measurement and testing methods Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Frequency-domain generalized total least-squares identification for modal analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20generalized%20total%20least-squares%20identification%20for%20modal%20analysis&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Verboven,%20P.&rft.date=2004-11-22&rft.volume=278&rft.issue=1&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2003.09.058&rft_dat=%3Cproquest_cross%3E29251915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29251915&rft_id=info:pmid/&rfr_iscdi=true |