Loading…

Frequency-domain generalized total least-squares identification for modal analysis

This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function bas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2004-11, Vol.278 (1), p.21-38
Main Authors: Verboven, P., Guillaume, P., Cauberghe, B., Parloo, E., Vanlanduit, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13
cites cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13
container_end_page 38
container_issue 1
container_start_page 21
container_title Journal of sound and vibration
container_volume 278
creator Verboven, P.
Guillaume, P.
Cauberghe, B.
Parloo, E.
Vanlanduit, S.
description This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.
doi_str_mv 10.1016/j.jsv.2003.09.058
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29251915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X03012458</els_id><sourcerecordid>29251915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</originalsourceid><addsrcrecordid>eNp9kEFrGzEQhUVJoY6bH9DbXtLbbke7K2VFTsUkbSFQKA3kJsbSqMisV7FmbXB-fWQcyK2nuXzvDe8T4ouERoLU3zbNhg9NC9A1YBpQwwexkGBUPSg9XIgFQNvWvYanT-KSeQMApu_6hfhzn2m3p8kda5-2GKfqH02UcYwv5Ks5zThWIyHPNe_2mImr6GmaY4gO55imKqRcbZMvGE44HjnyZ_Ex4Mh09XaX4vH-7u_qZ_3w-8ev1feH2nVKz_XgZdChIxfam7V2SjlHw9pDH7q1Ut4HcAQI4BX2bddJp4wyBnv0QesS7pbi67n3OacygWe7jexoHHGitGfbmlZJI1UB5Rl0OTFnCvY5xy3mo5VgT_bsxhZ79mTPgrHFXslcv5UjOxxDxslFfg9qedPrwRTu9sxRWXqIlC27WHSSj5ncbH2K__nyCmR9h1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29251915</pqid></control><display><type>article</type><title>Frequency-domain generalized total least-squares identification for modal analysis</title><source>Elsevier</source><creator>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</creator><creatorcontrib>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</creatorcontrib><description>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2003.09.058</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Measurement and testing methods ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2004-11, Vol.278 (1), p.21-38</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</citedby><cites>FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16174689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verboven, P.</creatorcontrib><creatorcontrib>Guillaume, P.</creatorcontrib><creatorcontrib>Cauberghe, B.</creatorcontrib><creatorcontrib>Parloo, E.</creatorcontrib><creatorcontrib>Vanlanduit, S.</creatorcontrib><title>Frequency-domain generalized total least-squares identification for modal analysis</title><title>Journal of sound and vibration</title><description>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrGzEQhUVJoY6bH9DbXtLbbke7K2VFTsUkbSFQKA3kJsbSqMisV7FmbXB-fWQcyK2nuXzvDe8T4ouERoLU3zbNhg9NC9A1YBpQwwexkGBUPSg9XIgFQNvWvYanT-KSeQMApu_6hfhzn2m3p8kda5-2GKfqH02UcYwv5Ks5zThWIyHPNe_2mImr6GmaY4gO55imKqRcbZMvGE44HjnyZ_Ex4Mh09XaX4vH-7u_qZ_3w-8ev1feH2nVKz_XgZdChIxfam7V2SjlHw9pDH7q1Ut4HcAQI4BX2bddJp4wyBnv0QesS7pbi67n3OacygWe7jexoHHGitGfbmlZJI1UB5Rl0OTFnCvY5xy3mo5VgT_bsxhZ79mTPgrHFXslcv5UjOxxDxslFfg9qedPrwRTu9sxRWXqIlC27WHSSj5ncbH2K__nyCmR9h1Q</recordid><startdate>20041122</startdate><enddate>20041122</enddate><creator>Verboven, P.</creator><creator>Guillaume, P.</creator><creator>Cauberghe, B.</creator><creator>Parloo, E.</creator><creator>Vanlanduit, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20041122</creationdate><title>Frequency-domain generalized total least-squares identification for modal analysis</title><author>Verboven, P. ; Guillaume, P. ; Cauberghe, B. ; Parloo, E. ; Vanlanduit, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verboven, P.</creatorcontrib><creatorcontrib>Guillaume, P.</creatorcontrib><creatorcontrib>Cauberghe, B.</creatorcontrib><creatorcontrib>Parloo, E.</creatorcontrib><creatorcontrib>Vanlanduit, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verboven, P.</au><au>Guillaume, P.</au><au>Cauberghe, B.</au><au>Parloo, E.</au><au>Vanlanduit, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain generalized total least-squares identification for modal analysis</atitle><jtitle>Journal of sound and vibration</jtitle><date>2004-11-22</date><risdate>2004</risdate><volume>278</volume><issue>1</issue><spage>21</spage><epage>38</epage><pages>21-38</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2003.09.058</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2004-11, Vol.278 (1), p.21-38
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29251915
source Elsevier
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Measurement and testing methods
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Frequency-domain generalized total least-squares identification for modal analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20generalized%20total%20least-squares%20identification%20for%20modal%20analysis&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Verboven,%20P.&rft.date=2004-11-22&rft.volume=278&rft.issue=1&rft.spage=21&rft.epage=38&rft.pages=21-38&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2003.09.058&rft_dat=%3Cproquest_cross%3E29251915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-8d1f6f3ecf27b6c55cce8bd04f3b55ddf0ce0a00d5a42331c59599a4adf668d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29251915&rft_id=info:pmid/&rfr_iscdi=true