Loading…

Foam processing and cellular structure of polylactide-based nanocomposites

Via a batch process in an autoclave, the foam processing of neat polylactide (PLA) and two different types of PLA-based nanocomposites (PLACNs) has been conducted using supercritical carbon dioxide (CO2) as a foaming agent. The cellular structures obtained from various ranges of foaming temperature–...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2006-07, Vol.47 (15), p.5350-5359
Main Authors: Ema, Yu, Ikeya, Manabu, Okamoto, Masami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Via a batch process in an autoclave, the foam processing of neat polylactide (PLA) and two different types of PLA-based nanocomposites (PLACNs) has been conducted using supercritical carbon dioxide (CO2) as a foaming agent. The cellular structures obtained from various ranges of foaming temperature–CO2 pressure were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The incorporation with nano-clay induced heterogeneous nucleation because of a lower activation energy barrier compared with homogeneous nucleation as revealed by the characterization of the interfacial tension between bubble and matrix. The grown cells having diameter of ∼200nm were localized along the dispersed nano-clay particles in the cell wall. The dispersed nano-clay particles acted as nucleating sites for cell formation and the cell growth occurs on the surfaces of the clays. The PLACNs provided excellent nanocomposite foams having high cell density from microcellular to nanocellular.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2006.05.050