Loading…

Hydration effects on the micro-mechanical properties of bone

Bone is a composite material with hydroxyapatite mineral, collagen, and water as primary components. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the collagen and mineral at ultrastructural length-scales is poo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2006-08, Vol.21 (8), p.1962-1968
Main Authors: Bembey, A.K., Bushby, A.J., Boyde, A., Ferguson, V.L., Oyen, M.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone is a composite material with hydroxyapatite mineral, collagen, and water as primary components. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the collagen and mineral at ultrastructural length-scales is poorly understood. The current study examined changes in the mechanical properties of bone as a function of hydration state. Tissues were soaked in different solvents and solutions, with different polarities, to manipulate tissue hydration. Mineralized bone was characterized using nanoindentation creep tests for quantification of both the elastic and viscoelastic mechanical responses, which varied dramatically with tissue bathing solution. The results were considered within the context of solution physical chemistry. Selectively removing and then replacing water provided insights into the ultrastructure of the tissues via the corresponding changes in the experimentally determined mechanical responses.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2006.0237