Loading…

Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion

•Differences in color, texture and odor of PCR samples from different origins.•The optimized BP-NN based on multi-data fusion improves the discrimination rate.•This study provides a new reference for origin traceability of other food products. This study utilized computer vision to extract color and...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2024-06, Vol.442, p.138408-138408, Article 138408
Main Authors: Chen, Peng, Fu, Rao, Shi, Yabo, Liu, Chang, Yang, Chenlu, Su, Yong, Lu, Tulin, Zhou, Peina, He, Weitong, Guo, Qiaosheng, Fei, Chenghao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c348t-544d9748192f8deb66633d48b762fd83a1ba81ecf0d604f18618887b5f9352af3
container_end_page 138408
container_issue
container_start_page 138408
container_title Food chemistry
container_volume 442
creator Chen, Peng
Fu, Rao
Shi, Yabo
Liu, Chang
Yang, Chenlu
Su, Yong
Lu, Tulin
Zhou, Peina
He, Weitong
Guo, Qiaosheng
Fei, Chenghao
description •Differences in color, texture and odor of PCR samples from different origins.•The optimized BP-NN based on multi-data fusion improves the discrimination rate.•This study provides a new reference for origin traceability of other food products. This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP > 1 and P 
doi_str_mv 10.1016/j.foodchem.2024.138408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2926078571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814624000566</els_id><sourcerecordid>2926078571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-544d9748192f8deb66633d48b762fd83a1ba81ecf0d604f18618887b5f9352af3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaLZp_0LQMT14K1n-kG9tl35BICGkZyFLo93Z2pYryQnp3-ofrJZNcs1pGHjeeWEeQs45W3PGm4_7tfPemh2M65KV1ZoLWTH5iqy4bEXRsrZ8TVZMMFlIXjWn5G2Me8ZYybh8Q06FLCveyXpF_l3NCUf8i9OWfrmmEyxBD3mkex9-Uz1sfcC0G6nzgV5DQKPDjMtIN5gC0htIaJZBJw30YrODacYPNCe2ONEUtAHd44DpgfY6gqV-osaP85Ig0DuMmHc9WboMmS2cjoludSzmXYYpDGBS8BMaOvm821xC3XIIvSMnTg8R3j_OM_Lr29fbzY_i8ur7z83ny8KISqairirbtZXkXemkhb5pGiFsJfu2KZ2VQvNeSw7GMduwynHZcCll29euE3WpnTgjF8e7c_B_FohJjRgNDIOewC9RCV4L3nEu2Ito2ZUNa2Xd8ow2R9QEH2MAp-aAow4PijN1cKv26smtOrhVR7c5eP7YsfQj2OfYk8wMfDoCkJ9yhxBUNAiTAYshP1NZjy91_AeWYrvd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926078571</pqid></control><display><type>article</type><title>Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion</title><source>ScienceDirect Journals</source><creator>Chen, Peng ; Fu, Rao ; Shi, Yabo ; Liu, Chang ; Yang, Chenlu ; Su, Yong ; Lu, Tulin ; Zhou, Peina ; He, Weitong ; Guo, Qiaosheng ; Fei, Chenghao</creator><creatorcontrib>Chen, Peng ; Fu, Rao ; Shi, Yabo ; Liu, Chang ; Yang, Chenlu ; Su, Yong ; Lu, Tulin ; Zhou, Peina ; He, Weitong ; Guo, Qiaosheng ; Fei, Chenghao</creatorcontrib><description>•Differences in color, texture and odor of PCR samples from different origins.•The optimized BP-NN based on multi-data fusion improves the discrimination rate.•This study provides a new reference for origin traceability of other food products. This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP &gt; 1 and P &lt; 0.05) from the 118 trait factors that can distinguish PCR from different origins. These factors include color, texture, and odor traits. By integrating multivariate statistical Analysis with the BP neural network algorithm, a novel artificial intelligence algorithm was developed and optimized for traceability of PCR origin. This algorithm achieved a 100% discrimination rate in differentiating PCR samples from various origins. This study offers a valuable reference and data support for developing intelligent algorithms that utilize data fusion from multiple intelligent sensory technologies to achieve rapid traceability of food origins.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2024.138408</identifier><identifier>PMID: 38241985</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>algorithms ; artificial intelligence ; color ; Computer vision ; electronic nose ; flavor ; food chemistry ; Intelligent algorithm ; multivariate analysis ; Multivariate statistics ; odors ; Pericarpium Citri Reticulate ; texture ; Traceability ; Ultra-fast gas phase electronic nose</subject><ispartof>Food chemistry, 2024-06, Vol.442, p.138408-138408, Article 138408</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-544d9748192f8deb66633d48b762fd83a1ba81ecf0d604f18618887b5f9352af3</cites><orcidid>0000-0002-9575-0204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38241985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Fu, Rao</creatorcontrib><creatorcontrib>Shi, Yabo</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Yang, Chenlu</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Lu, Tulin</creatorcontrib><creatorcontrib>Zhou, Peina</creatorcontrib><creatorcontrib>He, Weitong</creatorcontrib><creatorcontrib>Guo, Qiaosheng</creatorcontrib><creatorcontrib>Fei, Chenghao</creatorcontrib><title>Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>•Differences in color, texture and odor of PCR samples from different origins.•The optimized BP-NN based on multi-data fusion improves the discrimination rate.•This study provides a new reference for origin traceability of other food products. This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP &gt; 1 and P &lt; 0.05) from the 118 trait factors that can distinguish PCR from different origins. These factors include color, texture, and odor traits. By integrating multivariate statistical Analysis with the BP neural network algorithm, a novel artificial intelligence algorithm was developed and optimized for traceability of PCR origin. This algorithm achieved a 100% discrimination rate in differentiating PCR samples from various origins. This study offers a valuable reference and data support for developing intelligent algorithms that utilize data fusion from multiple intelligent sensory technologies to achieve rapid traceability of food origins.</description><subject>algorithms</subject><subject>artificial intelligence</subject><subject>color</subject><subject>Computer vision</subject><subject>electronic nose</subject><subject>flavor</subject><subject>food chemistry</subject><subject>Intelligent algorithm</subject><subject>multivariate analysis</subject><subject>Multivariate statistics</subject><subject>odors</subject><subject>Pericarpium Citri Reticulate</subject><subject>texture</subject><subject>Traceability</subject><subject>Ultra-fast gas phase electronic nose</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVpaLZp_0LQMT14K1n-kG9tl35BICGkZyFLo93Z2pYryQnp3-ofrJZNcs1pGHjeeWEeQs45W3PGm4_7tfPemh2M65KV1ZoLWTH5iqy4bEXRsrZ8TVZMMFlIXjWn5G2Me8ZYybh8Q06FLCveyXpF_l3NCUf8i9OWfrmmEyxBD3mkex9-Uz1sfcC0G6nzgV5DQKPDjMtIN5gC0htIaJZBJw30YrODacYPNCe2ONEUtAHd44DpgfY6gqV-osaP85Ig0DuMmHc9WboMmS2cjoludSzmXYYpDGBS8BMaOvm821xC3XIIvSMnTg8R3j_OM_Lr29fbzY_i8ur7z83ny8KISqairirbtZXkXemkhb5pGiFsJfu2KZ2VQvNeSw7GMduwynHZcCll29euE3WpnTgjF8e7c_B_FohJjRgNDIOewC9RCV4L3nEu2Ito2ZUNa2Xd8ow2R9QEH2MAp-aAow4PijN1cKv26smtOrhVR7c5eP7YsfQj2OfYk8wMfDoCkJ9yhxBUNAiTAYshP1NZjy91_AeWYrvd</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Peng</creator><creator>Fu, Rao</creator><creator>Shi, Yabo</creator><creator>Liu, Chang</creator><creator>Yang, Chenlu</creator><creator>Su, Yong</creator><creator>Lu, Tulin</creator><creator>Zhou, Peina</creator><creator>He, Weitong</creator><creator>Guo, Qiaosheng</creator><creator>Fei, Chenghao</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9575-0204</orcidid></search><sort><creationdate>20240601</creationdate><title>Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion</title><author>Chen, Peng ; Fu, Rao ; Shi, Yabo ; Liu, Chang ; Yang, Chenlu ; Su, Yong ; Lu, Tulin ; Zhou, Peina ; He, Weitong ; Guo, Qiaosheng ; Fei, Chenghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-544d9748192f8deb66633d48b762fd83a1ba81ecf0d604f18618887b5f9352af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algorithms</topic><topic>artificial intelligence</topic><topic>color</topic><topic>Computer vision</topic><topic>electronic nose</topic><topic>flavor</topic><topic>food chemistry</topic><topic>Intelligent algorithm</topic><topic>multivariate analysis</topic><topic>Multivariate statistics</topic><topic>odors</topic><topic>Pericarpium Citri Reticulate</topic><topic>texture</topic><topic>Traceability</topic><topic>Ultra-fast gas phase electronic nose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Fu, Rao</creatorcontrib><creatorcontrib>Shi, Yabo</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Yang, Chenlu</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Lu, Tulin</creatorcontrib><creatorcontrib>Zhou, Peina</creatorcontrib><creatorcontrib>He, Weitong</creatorcontrib><creatorcontrib>Guo, Qiaosheng</creatorcontrib><creatorcontrib>Fei, Chenghao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Peng</au><au>Fu, Rao</au><au>Shi, Yabo</au><au>Liu, Chang</au><au>Yang, Chenlu</au><au>Su, Yong</au><au>Lu, Tulin</au><au>Zhou, Peina</au><au>He, Weitong</au><au>Guo, Qiaosheng</au><au>Fei, Chenghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>442</volume><spage>138408</spage><epage>138408</epage><pages>138408-138408</pages><artnum>138408</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•Differences in color, texture and odor of PCR samples from different origins.•The optimized BP-NN based on multi-data fusion improves the discrimination rate.•This study provides a new reference for origin traceability of other food products. This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP &gt; 1 and P &lt; 0.05) from the 118 trait factors that can distinguish PCR from different origins. These factors include color, texture, and odor traits. By integrating multivariate statistical Analysis with the BP neural network algorithm, a novel artificial intelligence algorithm was developed and optimized for traceability of PCR origin. This algorithm achieved a 100% discrimination rate in differentiating PCR samples from various origins. This study offers a valuable reference and data support for developing intelligent algorithms that utilize data fusion from multiple intelligent sensory technologies to achieve rapid traceability of food origins.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38241985</pmid><doi>10.1016/j.foodchem.2024.138408</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9575-0204</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2024-06, Vol.442, p.138408-138408, Article 138408
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_2926078571
source ScienceDirect Journals
subjects algorithms
artificial intelligence
color
Computer vision
electronic nose
flavor
food chemistry
Intelligent algorithm
multivariate analysis
Multivariate statistics
odors
Pericarpium Citri Reticulate
texture
Traceability
Ultra-fast gas phase electronic nose
title Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20BP%20neural%20network%20algorithm%20for%20Pericarpium%20Citri%20Reticulatae%20(Chenpi)%20origin%20traceability%20based%20on%20computer%20vision%20and%20ultra-fast%20gas-phase%20electronic%20nose%20data%20fusion&rft.jtitle=Food%20chemistry&rft.au=Chen,%20Peng&rft.date=2024-06-01&rft.volume=442&rft.spage=138408&rft.epage=138408&rft.pages=138408-138408&rft.artnum=138408&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2024.138408&rft_dat=%3Cproquest_cross%3E2926078571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-544d9748192f8deb66633d48b762fd83a1ba81ecf0d604f18618887b5f9352af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2926078571&rft_id=info:pmid/38241985&rfr_iscdi=true