Loading…
Machine learning-based prediction of the outcomes of cochlear implantation in patients with inner ear malformation
Objective The objectives of this study are twofold: first, to visualize the structure of malformed cochleae through image reconstruction; and second, to develop a predictive model for postoperative outcomes of cochlear implantation (CI) in patients diagnosed with cochlear hypoplasia (CH) and incompl...
Saved in:
Published in: | European archives of oto-rhino-laryngology 2024-07, Vol.281 (7), p.3535-3545 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective
The objectives of this study are twofold: first, to visualize the structure of malformed cochleae through image reconstruction; and second, to develop a predictive model for postoperative outcomes of cochlear implantation (CI) in patients diagnosed with cochlear hypoplasia (CH) and incomplete partition (IP) malformation.
Methods
The clinical data from patients diagnosed with cochlear hypoplasia (CH) and incomplete partition (IP) malformation who underwent cochlear implantation (CI) at Beijing Tongren Hospital between January 2016 and August 2020 were collected. Radiological features were analyzed through 3D segmentation of the cochlea. Postoperative auditory speech rehabilitation outcomes were evaluated using the Categories of Auditory Performance (CAP) and the Speech Intelligibility Rating (SIR). This study aimed to investigate the relationship between cochlear parameters and postoperative outcomes. Additionally, a predictive model for postoperative outcomes was developed using the K-nearest neighbors (KNN) algorithm.
Results
In our study, we conducted feature selection by using patients’ imaging and audiological attributes. This process involved methods such as the removal of missing values, correlation analysis, and chi-square tests. The findings indicated that two specific features, cochlear volume (
V
) and cochlear canal length (CDL), significantly contributed to predicting the outcomes of hearing and speech rehabilitation for patients with inner ear malformations. In terms of hearing rehabilitation, the KNN classification achieved an accuracy of 93.3%. Likewise, for speech rehabilitation, the KNN classification demonstrated an accuracy of 86.7%.
Conclusion
The measurements obtained from the 3D reconstruction model hold significant clinical relevance. Despite the considerable variability in cochlear morphology across individuals, radiological features remain effective in predicting cochlear implantation (CI) prognosis for patients with inner ear malformations. The utilization of 3D segmentation techniques and the developed predictive model can assist surgeons in conducting preoperative cochlear structural measurements for patients with inner ear malformations. This, in turn, can offer a more informed perspective on the anticipated outcomes of cochlear implantation. |
---|---|
ISSN: | 0937-4477 1434-4726 1434-4726 |
DOI: | 10.1007/s00405-024-08463-w |