Loading…
Instabilities in supersonic compression ramp flow
Separation of a supersonic boundary layer near a compression ramp is considered in the limit of large Reynolds numbers and for Mach numbers $O(1)$. When the ramp angle is small, the motion may be described by the well-known triple-deck theory describing viscous–inviscid interactions. For small value...
Saved in:
Published in: | Journal of fluid mechanics 2004-10, Vol.517, p.309-330 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-8443919bb0c963cb8ef05901bdaeb3458a7e6bfe5ea65110230511842e8a9eab3 |
---|---|
cites | |
container_end_page | 330 |
container_issue | |
container_start_page | 309 |
container_title | Journal of fluid mechanics |
container_volume | 517 |
creator | FLETCHER, A. J. P. RUBAN, A. I. WALKER, J. D. A. |
description | Separation of a supersonic boundary layer near a compression ramp is considered in the limit of large Reynolds numbers and for Mach numbers $O(1)$. When the ramp angle is small, the motion may be described by the well-known triple-deck theory describing viscous–inviscid interactions. For small values of the scaled ramp angle, steady stable solutions can be obtained. However, it is shown that when a recirculation zone is present and the ramp angle is sufficiently large, the flow in the recirculation zone is susceptible to convective instabilities when perturbations are introduced there. At still larger values of the scaled ramp angle, an absolute instability is shown to occur that leads to a violent local breakdown of the boundary layer. The calculated results are shown to be consistent with a theoretical criterion that is the necessary and sufficient condition for the onset of instability. |
doi_str_mv | 10.1017/S0022112004000916 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29269267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112004000916</cupid><sourcerecordid>1399130911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8443919bb0c963cb8ef05901bdaeb3458a7e6bfe5ea65110230511842e8a9eab3</originalsourceid><addsrcrecordid>eNp1kE1rGzEQhkVooK7TH9DbUmhvm4y0Wu3qWJvGCRhCvqA3IcmzQel-VbMmzb-PjE0CLYGBObzPDA8vY184nHLg1dktgBCcCwAJAJqrIzbjUum8UrL8wGa7ON_lH9knokcAXoCuZoxf9jRZF9owBaQs9BltR4w09MFnfujGiERh6LNouzFr2uHphB03tiX8fNhzdn_-8255ka-vVpfLH-vcy1JNeS1lobl2DrxWhXc1NlBq4G5j0RWyrG2FyjVYolUl5yAKSKuWAmur0bpizr7v_45x-LNFmkwXyGPb2h6HLRmhhUpTJfDrP-DjsI19cjOCQ51EhEoQ30M-DkQRGzPG0Nn4bDiYXYPmvwbTzbfDY0vetk20vQ_0dqiEKCq94_I9F2jCv6-5jb9N0qtKo1bXZnmz0otfcmEuEl8cXGznYtg84Jvx-zYvx92Mug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210884426</pqid></control><display><type>article</type><title>Instabilities in supersonic compression ramp flow</title><source>Cambridge Journals Online</source><creator>FLETCHER, A. J. P. ; RUBAN, A. I. ; WALKER, J. D. A.</creator><creatorcontrib>FLETCHER, A. J. P. ; RUBAN, A. I. ; WALKER, J. D. A.</creatorcontrib><description>Separation of a supersonic boundary layer near a compression ramp is considered in the limit of large Reynolds numbers and for Mach numbers $O(1)$. When the ramp angle is small, the motion may be described by the well-known triple-deck theory describing viscous–inviscid interactions. For small values of the scaled ramp angle, steady stable solutions can be obtained. However, it is shown that when a recirculation zone is present and the ramp angle is sufficiently large, the flow in the recirculation zone is susceptible to convective instabilities when perturbations are introduced there. At still larger values of the scaled ramp angle, an absolute instability is shown to occur that leads to a violent local breakdown of the boundary layer. The calculated results are shown to be consistent with a theoretical criterion that is the necessary and sufficient condition for the onset of instability.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112004000916</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layers ; Buoyancy-driven instability ; Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Flow separation ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects</subject><ispartof>Journal of fluid mechanics, 2004-10, Vol.517, p.309-330</ispartof><rights>2004 Cambridge University Press</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8443919bb0c963cb8ef05901bdaeb3458a7e6bfe5ea65110230511842e8a9eab3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112004000916/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16223796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FLETCHER, A. J. P.</creatorcontrib><creatorcontrib>RUBAN, A. I.</creatorcontrib><creatorcontrib>WALKER, J. D. A.</creatorcontrib><title>Instabilities in supersonic compression ramp flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Separation of a supersonic boundary layer near a compression ramp is considered in the limit of large Reynolds numbers and for Mach numbers $O(1)$. When the ramp angle is small, the motion may be described by the well-known triple-deck theory describing viscous–inviscid interactions. For small values of the scaled ramp angle, steady stable solutions can be obtained. However, it is shown that when a recirculation zone is present and the ramp angle is sufficiently large, the flow in the recirculation zone is susceptible to convective instabilities when perturbations are introduced there. At still larger values of the scaled ramp angle, an absolute instability is shown to occur that leads to a violent local breakdown of the boundary layer. The calculated results are shown to be consistent with a theoretical criterion that is the necessary and sufficient condition for the onset of instability.</description><subject>Boundary layers</subject><subject>Buoyancy-driven instability</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Flow separation</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rGzEQhkVooK7TH9DbUmhvm4y0Wu3qWJvGCRhCvqA3IcmzQel-VbMmzb-PjE0CLYGBObzPDA8vY184nHLg1dktgBCcCwAJAJqrIzbjUum8UrL8wGa7ON_lH9knokcAXoCuZoxf9jRZF9owBaQs9BltR4w09MFnfujGiERh6LNouzFr2uHphB03tiX8fNhzdn_-8255ka-vVpfLH-vcy1JNeS1lobl2DrxWhXc1NlBq4G5j0RWyrG2FyjVYolUl5yAKSKuWAmur0bpizr7v_45x-LNFmkwXyGPb2h6HLRmhhUpTJfDrP-DjsI19cjOCQ51EhEoQ30M-DkQRGzPG0Nn4bDiYXYPmvwbTzbfDY0vetk20vQ_0dqiEKCq94_I9F2jCv6-5jb9N0qtKo1bXZnmz0otfcmEuEl8cXGznYtg84Jvx-zYvx92Mug</recordid><startdate>20041025</startdate><enddate>20041025</enddate><creator>FLETCHER, A. J. P.</creator><creator>RUBAN, A. I.</creator><creator>WALKER, J. D. A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20041025</creationdate><title>Instabilities in supersonic compression ramp flow</title><author>FLETCHER, A. J. P. ; RUBAN, A. I. ; WALKER, J. D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8443919bb0c963cb8ef05901bdaeb3458a7e6bfe5ea65110230511842e8a9eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Boundary layers</topic><topic>Buoyancy-driven instability</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Flow separation</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FLETCHER, A. J. P.</creatorcontrib><creatorcontrib>RUBAN, A. I.</creatorcontrib><creatorcontrib>WALKER, J. D. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FLETCHER, A. J. P.</au><au>RUBAN, A. I.</au><au>WALKER, J. D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instabilities in supersonic compression ramp flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2004-10-25</date><risdate>2004</risdate><volume>517</volume><spage>309</spage><epage>330</epage><pages>309-330</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Separation of a supersonic boundary layer near a compression ramp is considered in the limit of large Reynolds numbers and for Mach numbers $O(1)$. When the ramp angle is small, the motion may be described by the well-known triple-deck theory describing viscous–inviscid interactions. For small values of the scaled ramp angle, steady stable solutions can be obtained. However, it is shown that when a recirculation zone is present and the ramp angle is sufficiently large, the flow in the recirculation zone is susceptible to convective instabilities when perturbations are introduced there. At still larger values of the scaled ramp angle, an absolute instability is shown to occur that leads to a violent local breakdown of the boundary layer. The calculated results are shown to be consistent with a theoretical criterion that is the necessary and sufficient condition for the onset of instability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112004000916</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2004-10, Vol.517, p.309-330 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_29269267 |
source | Cambridge Journals Online |
subjects | Boundary layers Buoyancy-driven instability Compressible flows shock and detonation phenomena Exact sciences and technology Flow separation Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Physics Shock-wave interactions and shock effects Shock-wave interactions and shockeffects |
title | Instabilities in supersonic compression ramp flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instabilities%20in%20supersonic%20compression%20ramp%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=FLETCHER,%20A.%20J.%20P.&rft.date=2004-10-25&rft.volume=517&rft.spage=309&rft.epage=330&rft.pages=309-330&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112004000916&rft_dat=%3Cproquest_cross%3E1399130911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-8443919bb0c963cb8ef05901bdaeb3458a7e6bfe5ea65110230511842e8a9eab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210884426&rft_id=info:pmid/&rft_cupid=10_1017_S0022112004000916&rfr_iscdi=true |